# STRALIS AT/AD

REPAIR MANUAL MECHANICAL ELECTRIC ELECTRONIC







This publication describes the characteristics, the data, the correct methodology of the repairs that can be made on each individual component of the vehicle.

By complying with the instructions supplied and using the specific tools it is possible to perform any repair intervention correctly, within the specified time frames, while protecting the technicians against incidents.

Before starting any repair work, make sure that all accident prevention devices are ready at hand.

Check and wear the protective personal equipment provided for by the safety standards: goggles, helmet, gloves, shoes.

Check the efficiency of all processing, lifting and transport tools before using them.

The data contained in this publication might fail to reflect the latest changes which the Manufacturer may introduce at any time, for technical or sales purposes, or to meet the requirements of local legislation.

Copy, even partial, of text and drawings is forbidden.

Publication Edited by: IVECO S.p.A. T.C.O. - B.U. Customer Service Lungo Stura Lazio, 15/19 10156 Torino (Italy)

Printed 603.93.141 - 1st Ed. 2003

Produced by:



B.U. TECHNICAL PUBLISHING C.so Svizzera, 185 10149 Torino (Italy)

|                                                                                                                                            | SPECIAL REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| are indicated in the Gene<br>The subjects usually deal<br>Technical data table, Driv<br>Where possible, the sam<br>Diagrams and symbols ha | for mechanical parts have been divided into Sections, each of which<br>eral Specifications. Each section features a main Unit (e.g. engine, g<br>It with in each section are:<br>ving torques, Equipment, Diagnostic, Removal and Fitting in place,<br>ne sequence of procedures has been followed for easy reference.<br>ave been widely used to give a clearer and more immediate illustrat<br>ring descriptions of some operations or procedures. | gears etc.).<br>Repair operations.  |
| Example                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| Ø I                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hten to torque<br>hten to torque +  |
| Ø2                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gular value                         |
| digit number. This numbe<br>and in the FAULT CODI                                                                                          | h section, every heading or sub-heading concerning the operations<br>er is the Product Code that is to be found in the repair operation de<br>ES.<br>indication of how to read this code is described below (see the R                                                                                                                                                                                                                               | escribed in the REPAIR TIMES CHARTS |
| Product Code:                                                                                                                              | S     O       PRODUCT     UNIT       SUB-ASSEMBLY       COMPONENT                                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| Product 52 =                                                                                                                               | Frame;<br>Axles;<br>Gears etc.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| Unit Code:                                                                                                                                 | PRODUCT UNIT SUB-ASSEMBLY<br>COMPONENT                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |
|                                                                                                                                            | lentify the ASSEMBLY within the PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| Unit 01 =                                                                                                                                  | Frame;<br>Chassis;<br>Bumpers etc .                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |
| Sub-assembly Code:                                                                                                                         | PRODUCT UNIT SUB-ASSEMBLY<br>COMPONENT                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |
| Unit 01 =                                                                                                                                  | Frame;<br>Chassis;<br>Chassis cross members etc.                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |

# Graphs and symbols

|                              | Removal<br>Disconnection                    |
|------------------------------|---------------------------------------------|
|                              | Refitting<br>Connection                     |
|                              | Removal<br>Disassembly                      |
|                              | Fitting in place<br>Assembly                |
|                              | Tighten to torque                           |
| $\widehat{\mathfrak{P}}_{a}$ | Tighten to torque + angle value             |
| ••                           | Press or caulk                              |
| 846                          | Regulation<br>Adjustment                    |
|                              | Warning<br>Note                             |
|                              | Visual inspection<br>Fitting position check |
| <b>F</b>                     | Measurement<br>Value to find<br>Check       |
| P                            | Equipment                                   |
| <u> </u>                     | Surface for machining<br>Machine finish     |
| Ś                            | Interference<br>Strained assembly           |
|                              | Thickness<br>Clearance                      |
|                              | Lubrication<br>Damp<br>Grease               |
|                              | Sealant<br>Adhesive                         |
|                              | Air bleeding                                |

|                        | Intake                                    |  |
|------------------------|-------------------------------------------|--|
| Þ                      | Exhaust                                   |  |
| $\langle \neg \rangle$ | Operation                                 |  |
| Q                      | Compression ratio                         |  |
|                        | Tolerance<br>Weight difference            |  |
|                        | Rolling torque                            |  |
| IVECO                  | Replacement<br>Original spare parts       |  |
|                        | Rotation                                  |  |
| $\triangleleft$        | Angle<br>Angular value                    |  |
|                        | Preload                                   |  |
|                        | Number of revolutions                     |  |
|                        | Temperature                               |  |
| bar                    | Pressure                                  |  |
| >                      | Oversized<br>Higher than<br>Maximum, peak |  |
| <                      | Undersized<br>Less than<br>Minimum        |  |
| A                      | Selection<br>Classes<br>Oversizing        |  |
|                        | Temperature < 0°<br>Cold<br>Winter        |  |
|                        | Temperature > 0°<br>Hot<br>Summer         |  |

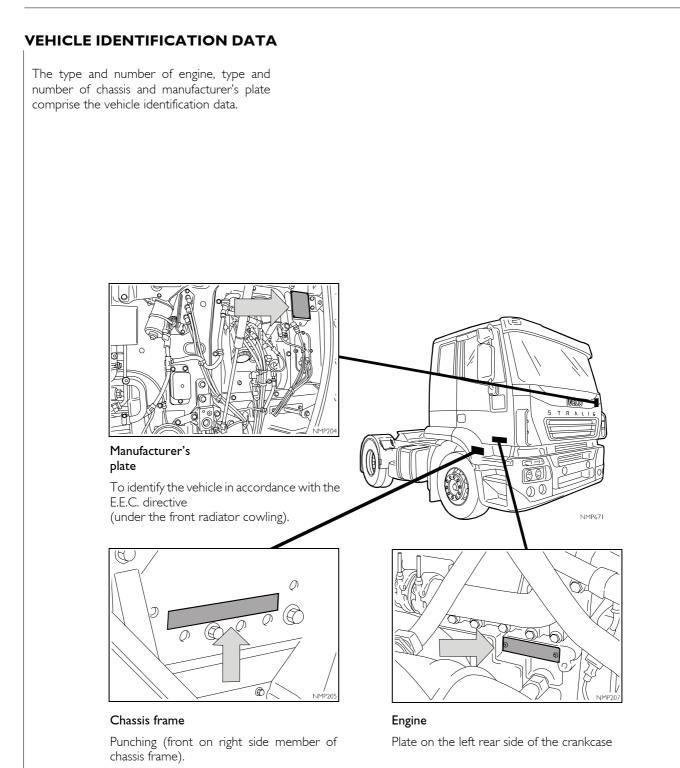
## STRALIS AT/AD

Print 603.93.141 – 1<sup>st</sup> edition Base – January 2003

#### UPDATE DATA

| Section | Description | Page | Revision date |
|---------|-------------|------|---------------|
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |
|         |             |      |               |

# INDEX OF SECTIONS


|                            | Section |
|----------------------------|---------|
| General information        |         |
| Engine                     | 2       |
| Clutch                     | 3       |
| Gearbox                    | 4       |
| Hydraulic retarder         | 5       |
| Propeller shafts           | 6       |
| Rear axles                 | 7       |
| Front axle                 | 8       |
| Front and rear suspensions | 9       |
| Wheels and tyres           | 10      |
| Steering system            | П       |
| Pneumatic system - brakes  | 12      |
| Bodywork and chassis frame | 13      |
| Maintenance                | 14      |
|                            |         |

#### SECTION I

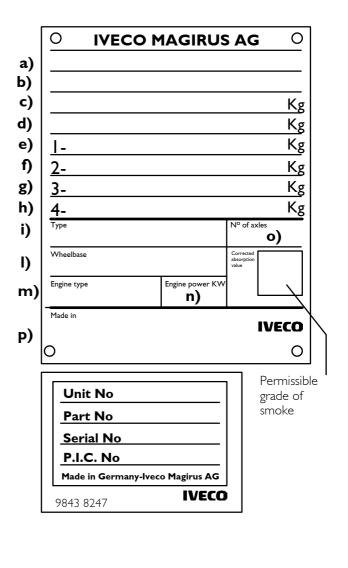
#### General

|                                 | Page |
|---------------------------------|------|
| VEHICLE IDENTIFICATION DATA     | 3    |
| Uehicle identification plate    | 4    |
| Production identification plate | 4    |
| COMPOSITION OF MODELS           | 5    |
| P.I.C. NUMBER CODING            | 9    |
| REPLENISHING FLUIDS             | 13   |

2 GENERAL



#### Stralis AT/AD


#### Vehicle Identification Plate

#### Plate legend

- a) Type-approval number marking (if applicable).
- b) Vehicle identification code number (V.I.N.).
- c) Total tractor weight.
- d) Total weight of tractor + trailer (if applicable).
- e) Permissible weight limit on 1 st axle.
- f) Permissible weight limit on 2nd axle (if applicable).
- g) Permissible weight limit on 3rd axle.
- h) Permissible weight limit on 4th axle (if applicable).
- i) Specific identification of type.
- I) Wheelbase in mm.
- m) Engine type.
- n) Engine power.
- o) No. of axles.
- p) Place of manufacture.



This plate shows the P.I.C. (production identification code number), which is needed when referring to the **spare parts catalogue** (electronic and/or microfiche catalogue). The P.I.C. is also given on the vehicle warranty card. **Note**: When consulting the catalogues, use only the first 8 digits of the product identification code number.



5

#### **COMPOSITION OF MODELS**

|                      | C                                    | CHASSIS CABS - 4x2 MODELS | 27         | 17          | 27/P          | <u>17/P</u>   | 27/FP-D    | 27/FP-D                         | 30/P          | 31          | 31           | 31/P          | 31/FP-D          | 31/FP-D          | 35          | 35<br>35 / D | 15/P          | 35/FP-D          | 35/FP-U                         | 2 9         | 40/P         | 40/P          | 40/FP-D          | 10/FP-D          | 10/HP-CI                         | t 6        |               | 43/P          | 43/HY-U    |
|----------------------|--------------------------------------|---------------------------|------------|-------------|---------------|---------------|------------|---------------------------------|---------------|-------------|--------------|---------------|------------------|------------------|-------------|--------------|---------------|------------------|---------------------------------|-------------|--------------|---------------|------------------|------------------|----------------------------------|------------|---------------|---------------|------------|
| ASSEMBLIES           |                                      |                           | AD 190 S   | AT 190 S 27 | AD 190 S 27/P | AT 190 S 27/P | AD 190 S   | AT 190 S 27/FP-D<br>AD 190 S 30 | AD 190 S 30/P | AD 190 S 31 | AT 190 S S31 | AD 190 S 31/P | AD 190 S 31/FP-D | AT 190 S 31/FP-D | AD 190 S 35 | AT 190 S 35  | AT 190 S 35/P | AD 190 S 35/FP-D | AI 190 S 35/HP-U<br>AD 190 S 40 | AT 190 S 40 | AD 190 S     | AT 190 S 40/P | AD 190 S 40/FP-D | AT 190 S 40/FP-D | AT 190 S 40/FP-CT<br>AD 190 S 43 | AT 190 S 4 | AD 190 S 43/P | AT 190 S 43/P |            |
|                      | F2BE0681F (270 CV)                   |                           | $\bigcirc$ | $\bigcirc$  | $\bigcirc$    | 0             | $\bigcirc$ | 0                               |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | 1            |               |                  |                  | -                                |            |               |               |            |
|                      | F2BE0681E (300 CV)                   |                           |            |             |               |               |            | С                               |               | )           |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  | 1                |                                  |            |               |               |            |
|                      | F2BE0681B (310 CV)                   |                           |            |             |               |               |            |                                 |               | 0           | 0            | $\bigcirc$    | DС               | $\circ$          |             |              |               |                  |                                 |             |              |               |                  | 1                |                                  |            |               |               |            |
|                      | F2BE0681A (350 CV)                   |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  | 0           | 0            | С             |                  | 0                               |             |              |               |                  | 1                |                                  |            |               |               |            |
| 1                    | F3AE0681B (400 CV)                   |                           |            |             |               |               |            |                                 |               | 1           |              |               |                  |                  |             |              |               |                  | (                               | C           |              | $) \bigcirc$  | $\circ$          | $\bigcirc$       | 0                                |            |               |               |            |
|                      | F3AE0681D (430 CV)                   |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | 1            |               |                  |                  | (                                | ЭC         |               | 0             | 0          |
| Het .                | Single disc 16"                      |                           | 0          | $\bigcirc$  | 0             | 0             | 0          | 00                              |               | C           | 0            | 0             | D C              |                  | 0           | 0            | D C           | $\circ$ $\circ$  | 0                               |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | Single disc 17''                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  | (                               |             |              | $\circ$       | 0                | $\bigcirc$       | 0                                | ЭC         |               | 0             | 0          |
|                      | ZF 9 S 109 D.D.                      |                           | $\bigcirc$ | $\bigcirc$  | $\bigcirc$    | $\bigcirc$    | $\bigcirc$ | $\bigcirc$                      |               | С           | $\bigcirc$   | $\bigcirc$ (  | С                | $\circ$          |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | ZF 16 S 151 D.D.                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  | $\bigcirc$  | $\bigcirc$   | С             | $\circ$          | 0                               |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | ZF 16 S 181 O.D.                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
| - '                  | ZF 16 S 181 D.D.                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  | (                               | C           | $) \bigcirc$ | $\bigcirc$    | $\bigcirc$       | $\bigcirc$       | $\bigcirc$                       | ЭC         | $) \cap$      | $\bigcirc$    | $\bigcirc$ |
|                      | ZF 16 S 221 O.D.                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | EuroTronic Automated 12 AS 2301 O.D. |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | $\vdash$     |               | Ш                |                  | _                                |            |               |               | _          |
|                      | EuroTronic Automated 12 AS 2301 D.D. |                           |            |             | $\bigcirc$    | $\bigcirc$    | $\bigcirc$ | 0                               |               |             |              | $\bigcirc$ (  | DС               | $) \bigcirc$     |             | (            | С             | $\circ$          | 0                               |             | 0            | $\bigcirc$    | $\circ$          | $\bigcirc$ (     | 0                                |            | $\bigcirc$    | $\bigcirc$    | 0          |
|                      | Allison MD 3060 P - MD 3066 P        |                           | $\bigcirc$ |             |               |               |            |                                 |               | )           |              | $\bigcirc$    |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | FRONT AXLE:                          | 5876/4 (F 8021)           | $\otimes$  | $\otimes$   | $\otimes$     | $\otimes$     |            | 8                               | $\otimes$     |             | $\otimes$    | $\otimes$     | 3                |                  | $\otimes$   |              | $\otimes$     |                  | 6                               | ⊗ ⊗         | $\otimes$    | $\otimes$     |                  | (                | ⊗ 0                              |            | $\otimes$     |               |            |
|                      |                                      | 5876/5 (F 8021)           | ullet      | ullet       | ullet         | ullet         |            |                                 |               | •           | ullet        | •             |                  |                  | ullet       | •            |               |                  |                                 |             |              | $\bullet$     |                  | •                |                                  |            |               | ullet         |            |
|                      |                                      | 5886/5 (F 9021)           |            |             |               |               | $\bigcirc$ | 0                               |               |             |              |               | С                | $) \bigcirc$     |             |              |               | $\bigcirc$       | 0                               |             |              |               | $\bigcirc$       | $\bigcirc$       |                                  |            |               |               | 0          |
|                      | ADDED AXLE:                          |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
| 문 신                  | Steering central                     | 5876/4 (F 8021)           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | Rigid rear                           | 55080/DI (N 807I) *       |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | Rigid rear                           | 56082/DI (N 9171) *       |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |
|                      | Steering rear                        | 57080/D1 (N 8072) *       |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | $\bot$       |               | Ш                |                  | $\perp$                          |            |               | $\square$     |            |
|                      | MERITOR MS 13-175/T - MS 13-175/D    |                           | $\bigcirc$ | $\bigcirc$  | $\bigcirc$    | $\bigcirc$    | $\bigcirc$ | $\bigcirc$                      | $) \bigcirc$  | $\circ$     | $\bigcirc$   | $\bigcirc$ (  | DС               | $\bigcirc$       | $\bigcirc$  | $\bigcirc$   | DC            | $\circ$          | $\bigcirc$                      | D C         |              | $\bigcirc$    | $\bigcirc$       | $\bigcirc$       | ) (                              | ЭC         | $) \bigcirc$  | $\bigcirc$    | 0          |
|                      | MERITOR RT 160/1                     |                           |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | $\bot$       |               | Ш                |                  | $\perp$                          |            |               | $\square$     |            |
|                      | 451391 HR                            |                           |            |             |               |               |            |                                 |               | -           |              |               |                  |                  |             |              |               |                  |                                 |             | $\perp$      |               |                  |                  |                                  | _          |               |               |            |
|                      | ZF 8098                              |                           | 0          | 0           | 0             | 0             | 0          | 00                              |               | 0           | $\bigcirc$   |               |                  | 0                | 0           | 0            |               | 0                |                                 |             | 0            | 0             | 0                | 0                | ) (                              |            |               | $\bigcirc$    | 0          |
| · . •                | FRONT MECHANICAL                     | Front                     |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             |              |               | $\square$        | $\downarrow$     |                                  |            |               |               | $\square$  |
| No. and and a second |                                      | Rear                      |            |             |               |               |            |                                 |               |             |              |               |                  |                  |             |              |               |                  |                                 |             | 1            |               |                  |                  | Γ                                |            | ן             |               |            |
|                      | PNEUMATIC                            | Front                     |            |             |               |               |            | $\bigcirc$                      |               |             |              |               | С                |                  |             |              |               | $\bigcirc$       | 0                               |             |              |               | $\bigcirc$       |                  | 0                                |            |               |               | 0          |
|                      |                                      | Rear                      |            |             | $\bigcirc$    | $\bigcirc$    | $\bigcirc$ | $\bigcirc$                      | С             | )           |              | $\bigcirc$ (  | С                | $\circ$          |             | (            | С             | $\circ$          | 0                               |             | $\bigcirc$   | $\circ$       | $\circ$          | $\bigcirc$       | $\bigcirc$                       |            | $\bigcirc$    | $\bigcirc$    | $\bigcirc$ |
| 164                  |                                      | Added axle                |            |             |               |               |            |                                 |               |             |              |               | Γ                |                  |             |              |               |                  |                                 |             |              |               |                  |                  |                                  |            |               |               |            |

⊗ = With brake calliper assembly at 57° without parking brake

□ = With parabolic leaf springs

• With brake calliper assembly at 0° with parking brake

\* = TI with drum brakes

With longitudinal and transversal bars

- 190 S 43/FP-D 190 S 43/FP-CT AT AT 00 -0  $\bigcirc$ \_ \_ 00 0  $\bigcirc$  $\otimes$  $\bigcirc$ 0 С  $\bigcirc$ С 00
- = 4x2 tractor

Т

Ρ

- TX = 6x2 C tractor (central added axle cannot be lifted)
- TY = 6x2 P tractor (rear added axle can be lifted)
- TN = 6x2 vehicles with mechanical rear suspensions and raisable rigid rear added axle
- TZ = 6x4 tractor (bogie rear axle)
  - = 4x2 6x2P 6x2C vehicles with air suspension on rear axle and 6x2P vehicles with rigid rear axle that can be lifted with single wheels
- PT = 6x2P vehicles with air suspension on rear axle and rigid rear added axle that can be lifted with twin wheels
- PS = 6x2P vehicles with air suspension on rear axle and on steering rear added axle that can be lifted with single wheels
- FP =  $4x^2 6x^4 6x^2P 6x^2C$  vehicles with front and rear air suspensions
- FS = 6x2P vehicles with front and rear air suspensions, steering rear added axle can be lifted with single wheels
- 4x2 = Vehicles with two axles with rear driving axle
- 6x2P = Vehicles with three axles with rear driving axle and rear added third axle that can be lifted
- 6x2C = Vehicles with three axles with rear driving axle and central added third axle that cannot be lifted
- 6x4 = Vehicles with three axles with two rear driving axles (in tandem)
- CM = Movable Boxes
- LT = Tractor with lowered chassis frame
- CT = Chassis cab with lowered chassis frame
- RR = Rough Roads
- D = Distribution
- HR = Hub Reduction
- AT = Active Time
- AD = Active Day

Base - January 2003

 $\diamond$ = With longitudinal and transversal bars

#### **COMPOSITION OF MODELS**

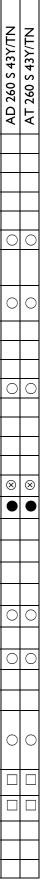
| ASSEMBLIES    | CHASSI                     | S CABS - 6x2 P MODELS | AD 260 S 27Y/P | AT 260 S 27Y/P | AD 260 S 27Y/PS | AT 260 S 27Y/PS | AU 260 5 2/1/FF-U | AD 260 S 27Y/FS-D | AT 260 S 27Y/FS-D | AD 260 S 30Y/PS | AT 260 S 30Y/PS | AT 260 S 30Y/FS-D<br>AD 260 S 31Y/P | AT 260 S 31Y/P | AD 260 S 31Y/PS | AT 260 S 31Y/PS | AD 260 S 31Y/FP-D | AD 260 S 31Y/FS-D          | AT 260 S 31Y/FS-D | AD 260 S 35Y/P | AT 260 S 35Y/P | AD 260 S 35Y/PS | AT 260 5 351/P3<br>AD 260 5 357/FP_D | AT 260 S 35Y/FP-D | AD 260 S 35Y/FS-D | AT 260 S 35Y/FS-D | AD 260 S 27Y/PT | AT 260 S 27Y/PT | AD 260 S 27Y/TN | AT 260 S 27Y/TN | AD 260 S 31 Y/P1<br>AT 260 S 31 Y/PT | AD 260 S 31Y/TN | AT 260 S 31Y/TN | AD 260 S 35Y/PT | AT 260 S 35Y/PT | AD 260 S 35Y/TN |
|---------------|----------------------------|-----------------------|----------------|----------------|-----------------|-----------------|-------------------|-------------------|-------------------|-----------------|-----------------|-------------------------------------|----------------|-----------------|-----------------|-------------------|----------------------------|-------------------|----------------|----------------|-----------------|--------------------------------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|--------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|               | F2BE0681F (270 CV)         |                       | 0              | $\cap$         |                 |                 |                   |                   | _                 | )               |                 |                                     |                | -               |                 |                   | +                          |                   |                | -              |                 | -                                    | +                 |                   | +                 | 0               | 0               |                 | 0               | +                                    | +               | $\vdash$        | +               | +               |                 |
|               | F2AE0681E (300 CV)         |                       |                |                | <u> </u>        |                 |                   |                   |                   | 0               | $\bigcirc$      | 0                                   |                |                 |                 |                   | +                          |                   |                |                |                 |                                      |                   |                   |                   |                 | 0               | <u> </u>        | _               |                                      | +               | $\vdash$        | +               | +               | -               |
|               | F2BE0681B (310 CV)         |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 | $\bigcirc$      | 0 (               | C                          |                   |                |                |                 |                                      |                   |                   |                   |                 |                 | -               | (               | ЭC                                   |                 | $\circ$         | +               | -               | -               |
|               | F2BE0681A (350 CV)         |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   | 0              | 0              | 0               |                                      | C                 | C                 |                   | )               |                 |                 | -               |                                      | -               |                 | $\bigcirc$      | $\bigcirc$      | $\bigcirc$      |
| - <del></del> | F3AE0681B (400 CV)         |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   | -              | -              |                 |                                      | -                 |                   |                   |                 |                 |                 | -               | 1                                    | -               |                 |                 |                 |                 |
|               | F3AE0681D (430 CV)         |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
| +tt           | Single disc 16"            |                       | 0              | 0              | 0               | 0               |                   |                   |                   | $\circ$         | $\bigcirc$      | 00                                  |                |                 | 0               | 00                |                            |                   | 0              | 0              | 0               |                                      |                   | C                 |                   | $\circ$         | $\bigcirc$      | 0               | ) (             | ЭC                                   |                 | 0               | $\bigcirc$      | 0               | 0               |
| Π-,           | Single disc 17''           |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
|               | ZF 9S 109 D.D.             |                       | $\bigcirc$     | $\bigcirc$     | $\bigcirc$      | $\bigcirc$      | $\supset$         | ЭC                |                   | $\circ$         | $\bigcirc$      | C                                   | )              |                 |                 | $\bigcirc$        | C                          | $\bigcirc$        |                |                |                 |                                      |                   |                   |                   | $\bigcirc$      | $\bigcirc$      | $\bigcirc$      | C               | ЭC                                   |                 |                 |                 |                 |                 |
|               | ZF 16S 151 O.D.            |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   | $\bigcirc$     | $\bigcirc$     | $\bigcirc$      | $\supset \bigcirc$                   | C                 | ) C               | $) \bigcirc$      | )               |                 |                 |                 |                                      |                 |                 | $\bigcirc$      | $\bigcirc$      | $\bigcirc$      |
|               | ZF 16S 181 O.D.            |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
| <b>-</b> '    | ZF 16S 181 D.D.            |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
|               | ZF 16S 221 D.D.            |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      | _                 |                   |                   |                 |                 |                 |                 |                                      |                 | $\square$       | _               |                 |                 |
|               | EuroTronic Automated 12 A  |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      | _                 |                   |                   |                 |                 |                 |                 |                                      |                 | $\square$       | _               |                 |                 |
|               | EuroTronic Automated 12 A  |                       | 0              | 0              |                 | 0 (             | 0                 | ЭC                |                   |                 |                 | 0                                   |                |                 |                 | 0 (               | ) (                        |                   | 0              | 0              | 0               |                                      | C                 | C                 | $) \bigcirc$      | $\circ$         | 0               |                 | (               | ЭC                                   | $\circ$         | $\circ$         | $\bigcirc$      | $\bigcirc$      |                 |
|               | Allison MD 3060 P - MD 306 |                       |                |                | $\bigcirc$      | 0               |                   | С                 |                   | _               |                 | $\circ$                             |                |                 |                 |                   | С                          | )                 |                |                |                 |                                      | _                 |                   |                   |                 |                 |                 | $\perp$         | $\perp$                              | _               |                 | $\rightarrow$   | $\square$       |                 |
|               | FRONT AXLE:                | 5876/4 (F 8021)       |                |                |                 | $\otimes$       | 8                 | 8 8               |                   |                 | $\otimes$       | $\otimes$ $\otimes$                 | $\otimes$      | $\otimes$       | $\otimes$       |                   |                            |                   |                |                | $\otimes$       |                                      |                   |                   |                   | $\otimes$       |                 |                 |                 |                                      | $\otimes$       |                 |                 | $\otimes$       | $\otimes$       |
|               |                            | 5876/5 (F 8021)       | ullet          | ullet          | ullet           |                 |                   |                   |                   |                 |                 |                                     |                |                 | ullet           |                   |                            |                   | lacksquare     | $\bullet$      | •               |                                      |                   |                   |                   | ullet           | lacksquare      | •               |                 |                                      |                 |                 |                 | ullet           | •               |
|               |                            | 5886/5 (F 9021)       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 | $\bigcirc$        | C                          | $\bigcirc$        |                |                |                 | C                                    |                   |                   | $\circ$           | )               |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
| t: 11         | ADDED AXLE:                |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
|               | Steering central           | 5876/2 (F 8021)       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 | -               |                 |
|               | Rigid rear                 | 55080/D1 (N 8071) *   | 0              | 0              |                 | (               |                   | C                 |                   |                 |                 | C                                   |                | )               |                 | 00                | )                          |                   | $\bigcirc$     | 0              |                 | (                                    |                   | )                 |                   |                 |                 | -               | -               | -                                    | +               | ┢──┼            | +               | -               | -               |
|               | Rigid rear                 | 56082/DI (N 9171) *   |                |                |                 |                 |                   | _                 |                   |                 |                 |                                     |                | _               |                 |                   | _                          |                   | <u> </u>       | 0              |                 | +                                    |                   | -                 |                   | 0               | $\bigcirc$      | 0 (             | 0 (             | ЭC                                   |                 | $\circ$         | $\bigcirc$      | 0               | 0               |
|               | Steering rear              | 57080/D1 (N 8072) *   |                |                | 0               | 0               |                   | -                 |                   |                 | 0               | 0                                   |                | $\cap$          | 0               |                   | С                          |                   |                |                | 0               | C                                    | -                 | С                 |                   |                 | $\bigcirc$      |                 | _               |                                      |                 | $\square$       |                 | _               |                 |
|               | MERITOR MS 13-175/T - MS   | . ,                   |                | $\cap$         |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 | $\pm$           |                                      | +               | $ \vdash $      |                 |                 |                 |
| ·             |                            | 13-1/3/U              | 0              | 0              | 0               |                 |                   | C                 |                   |                 | $\cup$          | 00                                  |                |                 | $\cup$          | 00                |                            | $\circ$           | $\cup$         | 0              |                 |                                      |                   |                   |                   |                 | $\cup$          | $\bigcirc$      | 4               |                                      | 10              | $\square$       | $\square$       | $\cup$          |                 |
| · · .         | MERITOR RT 160/1           |                       |                |                |                 |                 |                   | _                 |                   |                 |                 |                                     |                | _               |                 |                   | _                          |                   |                |                |                 | _                                    | _                 | _                 |                   |                 |                 |                 | _               | _                                    |                 | $\vdash$        | —               | $\rightarrow$   |                 |
|               | 451391 HR                  |                       |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      | _                 | _                 |                   |                 |                 |                 | _               | _                                    |                 | $\vdash$        | $\rightarrow$   | $\rightarrow$   |                 |
|               | ZF 8098                    |                       | 0              | 0              | 0               | 0               |                   |                   |                   | 0               |                 | 00                                  |                |                 | 0               | 00                |                            | $\circ$           | 0              | 0              | 0               |                                      |                   | C                 |                   | $\circ$         | 0               | 0               | ) (             | ЭC                                   |                 | 0               | 0               | 0               | 0               |
|               | FRONT MECHANICAL           | Front                 |                |                |                 |                 | +                 |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 | ][              |                                      |                 |                 |                 |                 |                 |
| ·             |                            | Rear                  |                |                |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 |                   |                            |                   |                |                |                 |                                      |                   |                   |                   |                 |                 |                 |                 |                                      |                 |                 |                 |                 |                 |
|               | PNEUMATIC                  | Front                 |                |                |                 |                 |                   | ЭC                |                   |                 |                 | $\bigcirc$                          |                |                 |                 | $\bigcirc$        | $\mathcal{O}(\mathcal{C})$ | $\bigcirc$        |                |                |                 |                                      |                   | C                 |                   |                 |                 |                 |                 |                                      |                 | $\square$       |                 | $\square$       |                 |
|               |                            | Rear                  | $\bigcirc$     | 0              |                 |                 |                   |                   |                   |                 |                 |                                     |                |                 |                 | $\bigcirc$        |                            |                   |                |                |                 |                                      |                   | _                 | _                 | $\bigcirc$      | $\bigcirc$      |                 |                 | ЭC                                   | )               |                 | $\bigcirc$      |                 |                 |
| N. W.         |                            | Added axle            | $\bigcirc$     | $\bigcirc$     | $\bigcirc$      | $\bigcirc$      |                   | ЭC                |                   | 0               | $\bigcirc$      | $\circ$                             |                | $) \circ$       | $\bigcirc$      | $\bigcirc$        | C                          | $) \bigcirc$      | $\bigcirc$     | $\bigcirc$     | $\bigcirc$      |                                      | C                 | ) C               | $) \bigcirc$      | $) \bigcirc$    | $\bigcirc$      |                 | (               | ЭC                                   | )               |                 | $\bigcirc$      | $\bigcirc$      |                 |

Print 603.93.141

| Т    | = | 4x2 tractor                                                                                                                                |
|------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
| ΤX   | = | 6x2 C tractor (central added axle cannot be lifted)                                                                                        |
| ΤY   | = | 6x2 P tractor (rear added axle can be lifted)                                                                                              |
| TN   | = | 6x2 vehicles with mechanical rear suspensions and raisable rigid rear added axle                                                           |
| ΤZ   | = | 6x4 tractor (bogie rear axle)                                                                                                              |
| Ρ    | = | 4x2 - 6x2P - 6x2C vehicles with air suspension on rear axle and $6x2P$ vehicles with rigid rear axle that can be lifted with single wheels |
| PT   | = | 6x2P vehicles with air suspension on rear<br>axle and rigid rear added axle that can be<br>lifted with twin wheels                         |
| PS   | = | 6x2P vehicles with air suspension on rear<br>axle and on steering rear added axle that<br>can be lifted with single wheels                 |
| FP   | = | 4x2 - 6x4 - 6x2P - 6x2C vehicles with front and rear air suspensions                                                                       |
| FS   | = | 6x2P vehicles with front and rear air<br>suspensions, steering rear added axle can<br>be lifted with single wheels                         |
| 4x2  | = | Vehicles with two axles with rear driving axle                                                                                             |
| 6x2P | = | Vehicles with three axles with rear driving<br>axle and rear added third axle that can be<br>lifted                                        |
| 6x2C | = | Vehicles with three axles with rear driving<br>axle and central added third axle that<br>cannot be lifted                                  |
| 6x4  | = | Vehicles with three axles with two rear driving axles (in tandem)                                                                          |
| CM   | = | Movable Boxes                                                                                                                              |
| ΗM   | = | Heavy Mission                                                                                                                              |
| LT   | = | Tractor with lowered chassis frame                                                                                                         |
| CT   | = | Chassis cab with lowered chassis frame                                                                                                     |
| RR   | = | Rough Roads                                                                                                                                |
| D    | = | Distribution                                                                                                                               |
| AT   | = | Active Time                                                                                                                                |
| AD   | = | Active Day                                                                                                                                 |

7

#### **COMPOSITION OF MODELS**


|                          | CHASSIS CABS - 6x2 P MODEI                 | AD 260 S 40Y/P                      | AT 260 S 40Y/P                                                        | AD 260 S 40Y/PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT 260 S 40Y/PS<br>AD 260 S 40Y/FP-D                                                                                                                                                                                                                                                                                        | AT 260 S 40Y/FP-D                                                                                                | AD 260 S 40Y/FS-D                                                                                                                                                                                                                        | AT 260 S 40Y/FS-D<br>AD 260 S 40Y/FS-CM                                                                                              | AT 260 S 40Y/FS-CM                                                                                                                                                                                                                                                                                                                               | AD 260 S 43Y/P                                                                                                                                                                                               | AT 260 S 43Y/P                                                                                                                                                                                                                                                                                                                                   | AD 260 S 43Y/PS                                                                                                                                                                                                                                                                                                                                                                                                                                           | AD 260 5 431/FP-D                                                                                                                                                                                                                                                                                                                                | AT 260 S 43Y/FP-D                                                                                                                                                                                                                  | AD 260 S 43Y/FS-D                                                                                                                                                                                                                                                      | AT 260 S 43Y/FS-D                                                                                                                                                                                                                                                | AD 260 S 43Y/FS-CM                                                                                                                                                                                                                                                                                   | AD 260 5 431/15-CI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AT 260 S 40Y/PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AD 260 S 40Y/TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AD 260 S 43Y/PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT 260 S 43Y/PT<br>AD 260 S 43Y/TN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------|--------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                            | AD 26(                              | AT 260                                                                | AD 26(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AT 260                                                                                                                                                                                                                                                                                                                      | AT 260                                                                                                           | AD 26(                                                                                                                                                                                                                                   | AT 26(<br>AD 26(                                                                                                                     | AT 260                                                                                                                                                                                                                                                                                                                                           | AD 26                                                                                                                                                                                                        | AT 260                                                                                                                                                                                                                                                                                                                                           | AD 26                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                  | AT 26(                                                                                                                                                                                                                             | AD 26                                                                                                                                                                                                                                                                  | AT 26(                                                                                                                                                                                                                                                           | AD 26                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT 26(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AD 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AD 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AT 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          |                                            |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |                                            | С                                   |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 0                                                                                                                                                                                                                                        | 00                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        | $\bigcirc$                                                                                                                                                                                                                                                       | 0 0                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                            |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          |                                            | С                                   |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 0                                                                                                                                                                                                                                        | 00                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | $\circ$                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                            |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 AS 2301 D.D.           |                                            | C                                   |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | $\bigcirc$                                                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  | 0 (                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 AS 2301 O.D.<br>3066 P |                                            | С                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      | D C                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        | $\bigcirc$                                                                                                                                                                                                                                                       | 0 (                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | 5876/4 (F 8021)<br>5876/5 (F 8021)         | 8                                   |                                                                       | $\otimes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul> |                                                                                                                  |                                                                                                                                                                                                                                          | × ()                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  | <ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul> | D                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>                               |
|                          | 5886/5 (F 9021)                            |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | $\circ$                                                                                                                                                                                                                                                                | $\bigcirc$                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 5876/4 (F 8021)<br>55080/D1 (N 8071) *     | С                                   |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | )                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | 56082/DI (N 917I) *<br>57080/DI (N 8072) * |                                     |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | $\bigcirc$                                                                                                                                                                                                                               | 00                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  | )                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                      | $\bigcirc$                                                                                                                                                                                                                                                       | 0 (                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - MS 13-175/D            |                                            | С                                   |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 0                                                                                                                                                                                                                                        |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |                                            | С                                   |                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | 0                                                                                                                                                                                                                                        | 00                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L                        | Front<br>Rear                              |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | Front<br>Rear                              |                                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             | _                                                                                                                |                                                                                                                                                                                                                                          | $\circ$                                                                                                                              | D C                                                                                                                                                                                                                                                                                                                                              | $) \bigcirc$                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  | C                                                                                                                                                                                                                                  | $\bigcirc$                                                                                                                                                                                                                                                             | $\bigcirc$                                                                                                                                                                                                                                                       | $\circ$                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t parking brake          | 2                                          | Rear<br>Front<br>Rear<br>Added axle | Rear       Front       Rear       Added axle       C       Added axle | Rear     Image: Constraint of the second secon | Rear     Image: Constraint of the system       Front     Image: Constraint of the system       Rear     Image: Constraint of the system       Added axle     Image: Constraint of the system       e     Image: Constraint of the system                                                                                    | Rear     I     I       Front     I     I       Rear     I     I       Added axle     I     I       e     I     I | Rear     Image: Constraint of the system       Front     Image: Constraint of the system       Rear     Image: Constraint of the system       Added axle     Image: Constraint of the system       e     Image: Constraint of the system | Rear     I     I       Front     I     I       Rear     I     I       Added axle     I     I       =     With parabolic leaf springs | Rear     Image: Constraint of the system       Front     Image: Constraint of the system       Rear     Image: Constraint of the system       Added axle     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system | Rear     I     I     I     I       Front     I     I     I     I     I       Rear     O     O     O     O     O       Added axle     O     O     O     O     O       e     I     With parabolic leaf springs | Rear     Image: Constraint of the system       Front     Image: Constraint of the system       Rear     Image: Constraint of the system       Added axle     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system | Rear     I     I     I     I     I       Front     I     I     I     I     I     I       Rear     I     I     I     I     I     I       Added axle     I     I     I     I     I     I       e     I     I     I     I     I     I                                                                                                                                                                                                                        | Rear     Image: Constraint of the system       Front     Image: Constraint of the system       Rear     Image: Constraint of the system       Added axle     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system       Image: Constraint of the system     Image: Constraint of the system | Rear     I     I     I     I     I       Front     I     I     I     I     I     I       Rear     I     I     I     I     I     I       Added axle     I     I     I     I     I     I       e     I     I     I     I     I     I | Rear     I     I     I     I     I     I       Front     I     I     I     I     I     I     I       Rear     I     I     I     I     I     I     I       Added axle     I     I     I     I     I     I     I       e     I     I     I     I     I     I     I     I | Rear     I     I     I     I     I     I       Front     I     I     I     I     I     I     I       Rear     I     I     I     I     I     I     I       Added axle     I     I     I     I     I     I     I       e     I     I     I     I     I     I     I | Rear     I     I     I     I     I     I     I       Front     I     I     I     I     I     I     I     I       Rear     I     I     I     I     I     I     I     I       Added axle     I     I     I     I     I     I     I     I       e     I     I     I     I     I     I     I     I     I | Rear     I     I     I     I     I     I     I     I       Front     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     < | Rear       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I | Rear     I     I     I     I     I     I     I     I       Front     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     I     < | Rear       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I | Rear       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I |

/ith brake calliper assembly at 57° without parking brake = With brake calliper assembly at 0° with parking brake •

= TI with drum brakes

 $\diamond$ 

= With longitudinal and transversal bars



= 4x2 tractor

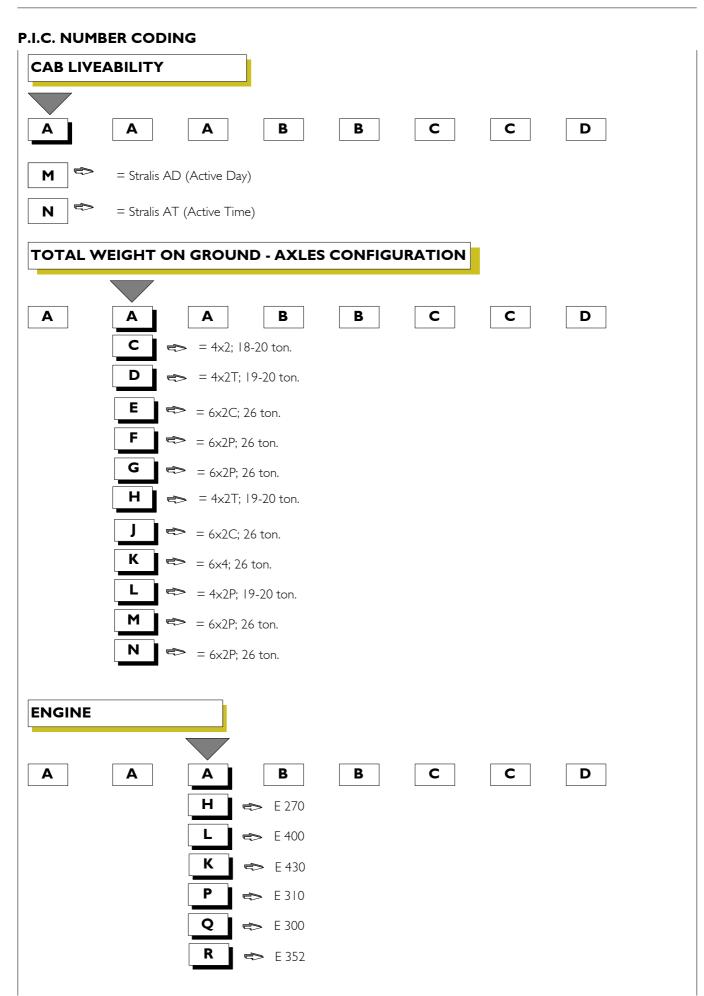
Т

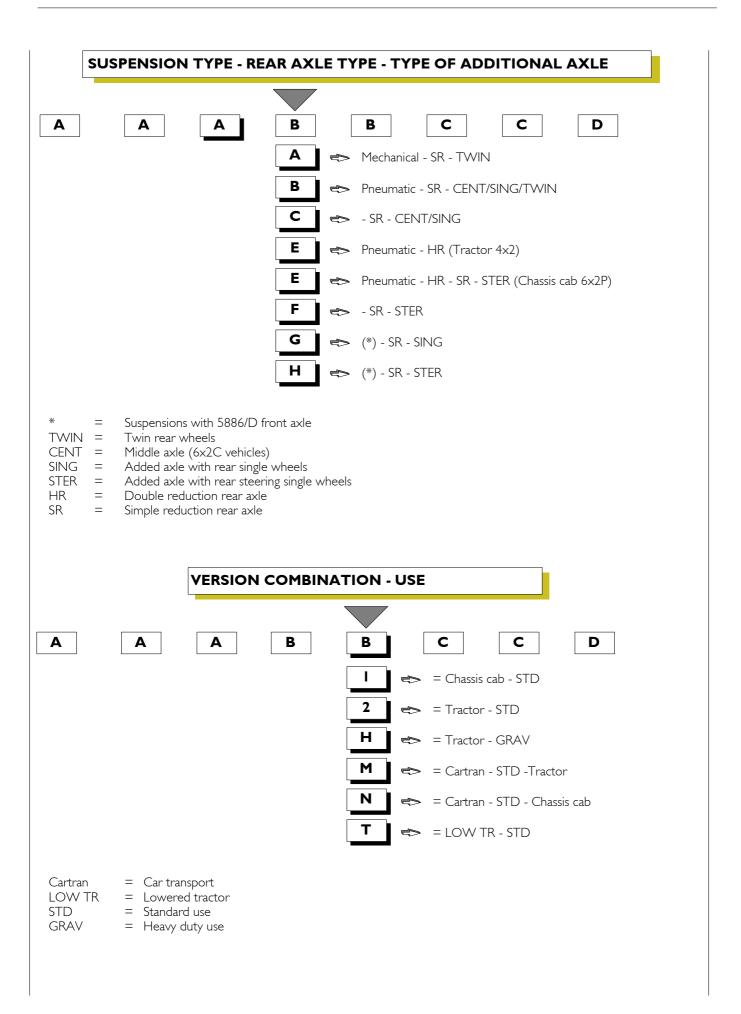
Ρ

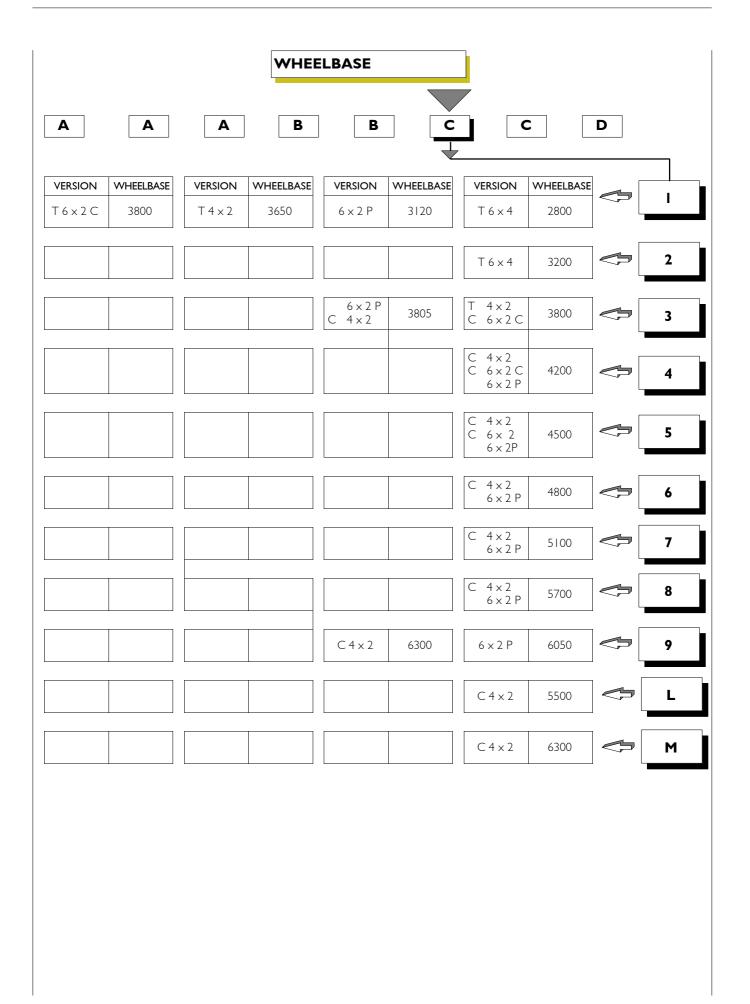
- ΤX  $= 6 \times 2$  C tractor (central added axle cannot be lifted)
- ΤY  $= 6 \times 2 P \text{ tractor}$  (rear added axle can be lifted)
- ΤN  $= 6x^2$  vehicles with mechanical rear suspensions and raisable rigid rear added axle
- ΤZ = 6x4 tractor (bogie rear axle)
  - =  $4x^2 6x^2P 6x^2C$  vehicles with air suspension on rear axle and 6x2P vehicles with rigid rear axle that can be lifted with single wheels
- PΤ  $= 6 \times 2P$  vehicles with air suspension on rear axle and rigid rear added axle that can be lifted with twin wheels
- PS  $= 6 \times 2P$  vehicles with air suspension on rear axle and on steering rear added axle that can be lifted with single wheels
- FP =  $4x^2 - 6x^4 - 6x^2P - 6x^2C$  vehicles with front and rear air suspensions
- FS =  $6 \times 2P$  vehicles with front and rear air suspensions, steering rear added axle can be lifted with single wheels
- 4x2 = Vehicles with two axles with rear driving axle
- 6x2P = Vehicles with three axles with rear driving axle and rear added third axle that can be lifted
- 6x2C = Vehicles with three axles with rear driving axle and central added third axle that cannot be lifted
- = Vehicles with three axles with two rear 6x4 driving axles (in tandem)
- СМ = Movable Boxes
- LT = Tractor with lowered chassis frame
- CT = Chassis cab with lowered chassis frame
- RR = Rough Roads
- D = Distribution
- HR = Hub Reduction
- AT = Active Time
- AD = Active Day

|                                    |                                              |                     | AD 440 S 31T/P<br>AT 440 S 31T/P |                | AD 440 S 35T/P-HR | AT 440 S 35T/P-HR<br>AD 440 S 40T/P | AT 440 S 40T/P | AD 440 S 40T/P-RR<br>AT 440 S 40T/P-RR | AD 440 S 40T/P-HR<br>AT 440 S 40T/P-HR | AT 440 S 40T/FP-C1 | AT 440 S 40T/FP-LT<br>AD 440 S 43T/P | AT 440 S 43T/P<br>AD 440 S 43T/P_RR | AT 440 S 43T/P-RR | AD 440 S 431/P-HR<br>AT 440 S 43T/P-HR | AT 440 S 43T/FP-CT<br>AT 440 S 43T/FP-LT | AD 440 S 40TX/P | AT 440 S 40TX/P<br>AD 440 S 43TX/P | AU 440 5 431 X/F<br>AT 440 S 43TXP | 1 440 5 431 AF          |
|------------------------------------|----------------------------------------------|---------------------|----------------------------------|----------------|-------------------|-------------------------------------|----------------|----------------------------------------|----------------------------------------|--------------------|--------------------------------------|-------------------------------------|-------------------|----------------------------------------|------------------------------------------|-----------------|------------------------------------|------------------------------------|-------------------------|
| MBLIES                             |                                              |                     | < <                              | < <            | ג ∢               | < <                                 | < -            | < <                                    | <ul><li></li></ul>                     | ₹                  | <u>A</u> A                           | < <                                 |                   | < <                                    | <u>ک</u> ک                               | < ∢             |                                    | [▲                                 | 1                       |
|                                    | F2BE0681F (270 CV)                           |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          | _               | +                                  |                                    |                         |
| $\overline{\overline{\mathbf{u}}}$ | F2AE0681E (300 CV)                           |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          | _               |                                    |                                    |                         |
| <u></u>                            | F2BE0681B (310 CV)<br>F2BE0681A (350 CV)     |                     | 00                               |                |                   | $\bigcirc$                          |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
| <u></u>                            | F3AE0681B (400 CV)                           |                     |                                  |                |                   |                                     |                |                                        | 00                                     |                    | $\bigcirc$                           |                                     |                   |                                        |                                          | $\cap$          |                                    |                                    |                         |
| _                                  | F3AE0681D (430 CV)                           |                     |                                  |                | _                 |                                     |                |                                        |                                        |                    |                                      | 00                                  |                   | $\cap \cap$                            | $\cap$                                   |                 |                                    |                                    | $\overline{\mathbb{C}}$ |
|                                    |                                              |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    | -                                  | _                       |
| H <b>an</b> t                      | Single disc 16''                             |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
| <b>  </b> -1                       | Single disc 17''                             |                     | 00                               |                |                   | 00                                  | 0              | 00                                     | OC                                     | $\circ$            | OC                                   | 00                                  |                   | 00                                     | 00                                       |                 | 00                                 | C                                  | С                       |
|                                    | ZF 9S 109 D.D.                               |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | ZF 16S 151 O.D.                              |                     | 00                               | $) \bigcirc ($ | O                 | $\bigcirc$                          |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | ZF 16S 181 O.D.                              |                     |                                  |                |                   |                                     |                |                                        | OC                                     |                    |                                      |                                     |                   | 00                                     |                                          |                 | $\circ$ $\circ$ $\circ$            | C                                  | 0                       |
| I.                                 | ZF 16S 181 D.D.                              |                     |                                  |                |                   | 0                                   | $\circ$        | 00                                     |                                        | 0                  | OC                                   | 00                                  |                   |                                        | $\bigcirc$                               | )               |                                    |                                    |                         |
|                                    | ZF 16S 221 D.D.                              |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | EuroTronic Automated 12 AS 2301 D.D.         |                     |                                  |                |                   |                                     |                |                                        | OC                                     |                    |                                      |                                     |                   | 00                                     |                                          |                 |                                    |                                    | _                       |
|                                    | EuroTronic Automated 12 AS 2301 O.D.         |                     | 00                               |                |                   | 00                                  | 0              | _                                      |                                        | 0                  | OC                                   |                                     |                   |                                        | O(C)                                     |                 |                                    |                                    | _                       |
|                                    | Allison MD 3060 P - MD 3066 P<br>FRONT AXLE: | 5876/4 (F 8021)     | 88                               | ) 🛞 (§         | ⊘ ⊗               | $\otimes$ $\otimes$                 | $\otimes$      | $\otimes \otimes$                      | $\otimes$ $\otimes$                    | $\otimes$          | $\otimes$ $\otimes$                  | 88                                  | $\otimes$         | ⊗ ⊗                                    | $\otimes$ $\otimes$                      | $\otimes$       | 8 8                                | 3 8                                | Ø                       |
|                                    |                                              | 5876/5 (F 8021)     | •                                |                |                   | ••                                  |                | • •                                    | • •                                    |                    | ••                                   |                                     |                   | • •                                    | •                                        |                 |                                    |                                    | ō                       |
|                                    |                                              | 5886/5 (F 9021)     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
| Ŀ                                  | ADDED AXLE:                                  |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    | —                                  |                         |
| ÷ ,                                | Steering central                             | 5876/4 (F 8021)     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          | 0               |                                    |                                    | $\overline{\mathbb{C}}$ |
|                                    | Rigid rear                                   | 55080/DI (N 807I) * |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | Rigid rear                                   | 56082/DI (N 9171) * |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | Steering rear                                | 57080/DI (N 8072) * |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | MERITOR MS 13-175/T - MS 13-175/D            |                     | 00                               |                |                   | 00                                  | $\circ$        | 00                                     |                                        | 0                  | OC                                   | 00                                  |                   |                                        | 00                                       |                 |                                    | C                                  | J                       |
|                                    | MERITOR RT 160/1                             |                     |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    |                         |
|                                    | 451391 HR                                    |                     |                                  |                |                   |                                     |                |                                        | OC                                     | )                  |                                      |                                     |                   | 00                                     |                                          |                 |                                    |                                    |                         |
|                                    | ZF 8098                                      |                     |                                  |                |                   | 00                                  | 0              | 00                                     | 00                                     |                    | 00                                   |                                     |                   | 00                                     | 00                                       |                 | 00                                 |                                    | С                       |
| 5                                  | FRONT MECHANICAL                             | Front               |                                  |                |                   |                                     |                |                                        |                                        | 1                  |                                      |                                     |                   |                                        |                                          |                 |                                    | ╗┼┍                                |                         |
| ير<br>مورب                         |                                              | Rear                |                                  |                |                   |                                     |                |                                        |                                        | -                  |                                      |                                     |                   |                                        |                                          |                 |                                    | +                                  | _                       |
| $\overline{}$                      | PNEUMATIC                                    | Front               |                                  |                |                   |                                     |                |                                        |                                        | 0                  | 0                                    |                                     | ++                | _                                      | 00                                       |                 | ++                                 | +                                  |                         |
|                                    |                                              | Rear                | 00                               | $) \bigcirc ($ | O                 | 00                                  | $\circ$        | 00                                     | OC                                     | $) \bigcirc$       | OC                                   | 00                                  |                   | 00                                     | $\bigcirc$                               | $) \bigcirc$    |                                    | ) (                                | 5                       |
| 1. je                              |                                              | Added axle          |                                  |                |                   |                                     |                |                                        |                                        |                    |                                      |                                     |                   |                                        |                                          |                 |                                    |                                    | _                       |

With longitudinal and transversal bars

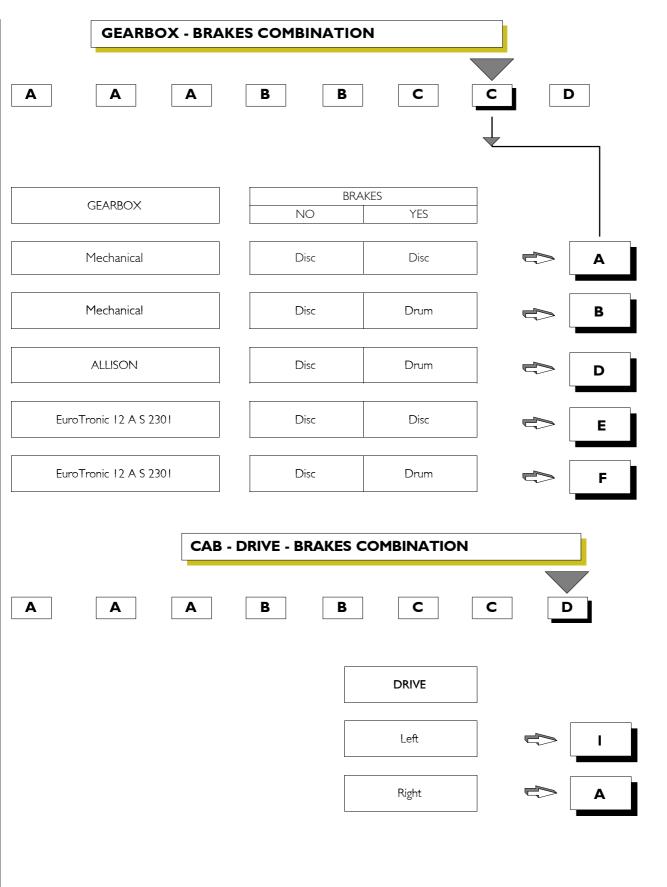

4x2


6x2 C 6x4


TRACTORS - MODELS

COMPOSITION OF MODELS

| Т    | = | 4x2 tractor                                                                                                                                |
|------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
| ΤX   | = | 6x2 C tractor (central added axle cannot be lifted)                                                                                        |
| ΤY   | = | 6x2 P tractor (rear added axle can be lifted)                                                                                              |
| TN   | = | 6x2 vehicles with mechanical rear suspensions and raisable rigid rear added axle                                                           |
| ΤZ   | = | 6x4 tractor (bogie rear axle)                                                                                                              |
| Ρ    | = | 4x2 - 6x2P - 6x2C vehicles with air suspension on rear axle and $6x2P$ vehicles with rigid rear axle that can be lifted with single wheels |
| PT   | = | 6x2P vehicles with air suspension on rear<br>axle and rigid rear added axle that can be<br>lifted with twin wheels                         |
| PS   | = | 6x2P vehicles with air suspension on rear<br>axle and on steering rear added axle that<br>can be lifted with single wheels                 |
| FP   | = | 4x2 - 6x4 - 6x2P - 6x2C vehicles with front and rear air suspensions                                                                       |
| FS   | = | 6x2P vehicles with front and rear air<br>suspensions, steering rear added axle can<br>be lifted with single wheels                         |
| 4x2  | = | Vehicles with two axles with rear driving axle                                                                                             |
| 6x2P | = | Vehicles with three axles with rear driving<br>axle and rear added third axle that can be<br>lifted                                        |
| 6x2C | = | Vehicles with three axles with rear driving<br>axle and central added third axle that<br>cannot be lifted                                  |
| 6x4  | = | Vehicles with three axles with two rear driving axles (in tandem)                                                                          |
| CM   | = | Movable Boxes                                                                                                                              |
| HM   | = | Heavy Mission                                                                                                                              |
| LT   | = | Tractor with lowered chassis frame                                                                                                         |
| CT   | = | Chassis cab with lowered chassis frame                                                                                                     |
| RR   | = | Rough Roads                                                                                                                                |
| D    | = | Distribution                                                                                                                               |
| AT   | = | Active Time                                                                                                                                |
| AD   | = | Active Day                                                                                                                                 |








GENERAL

12



#### **REPLENISHING FLUIDS**

| JBRICANTS RECOMMENDED BY IVECO                                                                                                                                  | PARTS TO BE FILLED UP                                                                                                                 | Quantity                                    |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                 |                                                                                                                                       | Litres                                      | Kg                                               |
| Urania FE 5W30(1)<br>Urania LD5<br>Urania Turbo LD                                                                                                              | Engine F2B                                                                                                                            |                                             |                                                  |
|                                                                                                                                                                 | Total capacity for first filling                                                                                                      | 28                                          | 25,2                                             |
|                                                                                                                                                                 | Capacity:                                                                                                                             |                                             |                                                  |
|                                                                                                                                                                 | - engine sump min level                                                                                                               | 12.5                                        | 11,2                                             |
|                                                                                                                                                                 | - engine sump max level                                                                                                               | 23                                          | 21                                               |
|                                                                                                                                                                 | <ul> <li>quantity in circulation that<br/>does not flow back to the en-<br/>gine sump</li> </ul>                                      | 5                                           | 4.5                                              |
|                                                                                                                                                                 | <ul> <li>quantity contained in the car-<br/>tridge filter (which has to be<br/>added to the cartridge filter re-<br/>fill)</li> </ul> | 2.5                                         | 2.3                                              |
| Urania FE 5W30 <sup>(1)</sup><br>Urania LD5                                                                                                                     | Engine F3A                                                                                                                            |                                             |                                                  |
| Urania Turbo LD                                                                                                                                                 | Total capacity I <sup>st</sup> filling<br>Capacity:                                                                                   | 30                                          | 29.8                                             |
|                                                                                                                                                                 | - engine sump at minimum level                                                                                                        | 17                                          | 15.3                                             |
|                                                                                                                                                                 | - engine sump at maximum level                                                                                                        | 25                                          | 22.5                                             |
|                                                                                                                                                                 | <ul> <li>quantity in circulation that does not re-<br/>turn to sump</li> </ul>                                                        | 7                                           | 6.3                                              |
|                                                                                                                                                                 | <ul> <li>quantity contained in cartridge filter (to<br/>add when changing the cartridge filter)</li> </ul>                            | 2.5                                         | 2.3                                              |
|                                                                                                                                                                 | Gearbox                                                                                                                               |                                             |                                                  |
| Tutela Truck FE-Gear <sup>1</sup>                                                                                                                               | ZF 9 S 109 *<br>ZF 16 S 151 *<br>ZF 16 S 151 + Intarder *<br>ZF 16 S 181 *<br>ZF 16 S 181 + Intarder*<br>ZF 16 S 221 *                | 8<br>11<br>18.5<br>13<br>21.5<br>13<br>21.5 | 7.2<br>10<br>16.65<br>12<br>19.35<br>12<br>19.35 |
| Quantity I <sup>st</sup> filling                                                                                                                                | ZF 16 S 221 + Intarder*<br>EuroTronic automated 12 AS 2301*                                                                           | 12                                          | 9.53                                             |
|                                                                                                                                                                 | EuroTronic automated 12 AS 2301* + intarder                                                                                           | 23                                          | 21                                               |
| Tutela GI/A                                                                                                                                                     | Allison MD 3060 P - MD 3066 P                                                                                                         | 18                                          | 16                                               |
| Tutela Truck FE-Gear <sup>1</sup><br>Tutela ZC 90                                                                                                               | Power take off (Multipower)                                                                                                           | 2.5                                         |                                                  |
| ) IVECO recommends using these oils for reasons o<br>lubricants. Also suited for cold climates (minimum<br>hese quantities are not decisive. An exact check mus |                                                                                                                                       | y with thes                                 | e types                                          |

### **REPLENISHING FLUIDS**

| IRP         | ICANTS RECOMMENDED BY IVEC                                  |                                                                                                    |                                                                                |                              | ntity                                                     |  |
|-------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|--|
| חסנ         | ICAINTS RECOMMENDED BT IVEC                                 | PARTS FOR                                                                                          | REPLENISHING                                                                   | Litres                       | kg                                                        |  |
|             | Tutela Truck FE-Axle <sup>(2)</sup>                         | Front hubs (single)<br>FRONT AXLE<br>FRONT AXLE<br>ADDED AXLE::                                    | 5876/4-/5 (F8021)<br>5886/5                                                    | 0.35<br>0.35                 | 0.32<br>0.32                                              |  |
|             | Tutela W140/M-DA<br>Tutela W90/M-DA <sup>3</sup>            | Steering central<br>Rigid rear<br>Rigid rear<br>Steering rear                                      | 5876/4 (F 8021)<br>55080/DI (N 8071)<br>56082/DI (N 9171)<br>57080/DI (N 8072) | 0.35<br>0.35<br>0.35<br>0.35 | 0.32<br>0.32<br>0.32<br>0.32                              |  |
|             |                                                             | Bridge Meritor MS 13-1                                                                             | 175/T - MS 13-175/D:                                                           |                              |                                                           |  |
|             | Tutela Truck<br>FE-Axle <sup>(2)</sup><br>Tutela WI 40/M-DA | □ (mechanical<br>□ (pneumatic s<br>Bridge 451391 HR                                                |                                                                                | 8.5<br> 7<br> 6              | 16.5<br>15.5<br>14.5                                      |  |
|             | Tutela W90/M-DA <sup>3</sup>                                | Rear axle Meritor in tanc<br>- middle<br>- rear                                                    | dem RT 160E/1                                                                  | 8.5<br>  6.5                 | 6.0<br> 4.8                                               |  |
|             | Tutela GI/A                                                 | Power steering                                                                                     |                                                                                | 2.7*<br> 3.5**               | 2.<br>1                                                   |  |
|             |                                                             | * Excluding vehicles with<br>** For vehicles with steer                                            |                                                                                |                              |                                                           |  |
| SOT SPECIAL | Tutela TRUCK<br>DOT SPECIAL                                 | Clutch circuit<br>(excluding vehicles with Euro Tronic gearbox)                                    |                                                                                | 0.5                          | 0.4                                                       |  |
| )+          | Water+Paraflu <sup>11</sup>                                 | Cooling system<br>Engine F2B<br>Engine F2B with Intarder<br>Engine F3A<br>Engine F3A with Intarder | Total capacity*<br>Total capacity*<br>Total capacity*<br>Total capacity*       | ~34<br>~50<br>~38<br>~58     | $\sim 23. \\ \sim 27 \\ \sim 39. \\ \sim 57. \end{cases}$ |  |
|             |                                                             | * = Protective anti-freeze<br>(concentration 50% freez                                             |                                                                                |                              |                                                           |  |
|             | Tutela LHM                                                  | Cab tilting system                                                                                 |                                                                                | 0.6                          | 0.5                                                       |  |

(2) Only on axles with disc brakes, IVECO recommends using these oils for reasons of fuel economy. IVECO provides new vehicles already with these types of lubricants. Also suited for cold climates (minimum temperature down to -30°C)
 (3) Specific for cold climates

These quantities are not decisive. An exact check must be made by verifying the levels

|                                                                                                                                                                                          |                                                | FL products                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|
| ingine oil<br>Neets the specifications:<br>ACEA E4 with a totally synthetic base<br>ACEA E5 with a mineral base<br>ACEA E3 with a mineral base                                           | <b>SAE 50W 30</b><br>SAE 15W 40<br>SAE 15W 40  | <b>URANIA FE 5W30</b><br>Urania LD5<br>Urania Turbo LD             |
| Oil for differential gear and wheel hubs<br>Meets the specifications:<br>API GL5, MT-I with a totally synthetic base<br>API GL5 with a mineral base<br>API GL5 with a mineral base       | <b>SAE 75W 90</b><br>SAE 85W 140<br>SAE 80W 90 | <b>Tutela Truck FE-Axle</b><br>Tutela W140/M-DA<br>Tutela W90/M-DA |
| <b>Oil for mechanical gearboxes</b><br>Containing non-EP anti-wear additives<br>Meets the specifications:<br><b>API GL4 with a totally synthetic base</b><br>API GL3 with a mineral base | <b>SAE 75W 85</b><br>SAE 80W 90                | <b>Tutela Truck FE-Gear</b><br>Tutela ZC90                         |
| <b>Oil for power steering and hydrostatic transmissions</b><br>A.T.F. DEXRON II D                                                                                                        | S                                              | Tutela GI/A                                                        |
| Grease for general greasing<br>based on lithium soaps, N.L.G.I. consistency no. 2                                                                                                        |                                                | Tutela MR 2                                                        |
| pecific grease for bearings and wheel hubs<br>based on lithium soaps, N.L.G.I. consistency no. 3                                                                                         |                                                | Tutela MR 3                                                        |
| <b>Clutch drive fluid</b><br>Conforming to N.H.T.S.A. standards 116, ISO 4925, St<br>VECO STANDARD 18-1820                                                                               | td. SAEJ 1703,                                 | Tutela TRUCK DOT SPECIAL                                           |
| <b>1ineral oil for hydraulic circuits</b><br>n compliance with IVE <b>CO STANDARD 18-1823</b>                                                                                            |                                                | Tutela LHM                                                         |
| Vindscreen washer fluid, mixture of spirit, water and UNA NC 956-11                                                                                                                      | l surfactants                                  | Tutela PROFESSIONAL SC 35                                          |
| rease for central lubrication systems based on lithic<br>th synthetic base, N.L.G.I. no. 2.<br>/orking temperatures: from -30°C to +140°C                                                | um soaps,                                      | Tutela COMAR 2                                                     |
| Concentrated protective fluid for radiators<br>ased on ethylene glycol containing corrosion inhibito<br>candard: IVECO-STANDARD 18-1830                                                  | ors, conforming to the                         | Paraflu <sup>11</sup>                                              |

I6 GENERAL

# SECTION 2 Engine

|                                                                 | Page |
|-----------------------------------------------------------------|------|
| F2B Engine                                                      | 3    |
| F3A Engine                                                      | 3    |
| Hidrocar pressure take-off on timing system<br>(P.T.O Optional) | 223  |

#### F2B Engine

|                                                                             | Page |
|-----------------------------------------------------------------------------|------|
| VIEWS OF THE ENGINE                                                         | 8    |
| GENERAL CHARACTERISTICS                                                     | 13   |
| ASSEMBLY CLEARANCE DATA                                                     | 16   |
| TIGHTENING TORQUES                                                          | 22   |
| TOOLS                                                                       | 28   |
| DISMANTLING THE ENGINE ON THE BENCH                                         | 40   |
| REPAIR OPERATIONS                                                           | 47   |
| CYLINDER BLOCK                                                              | 47   |
| Checks and measurements                                                     | 47   |
| CYLINDER LINERS                                                             | 48   |
| Fitting and checking protrusion                                             | 49   |
| 🔲 Removal                                                                   | 49   |
| Replacing cylinder liners                                                   | 49   |
| CRANKSHAFT                                                                  | 50   |
| Measuring main journals and crank pins                                      | 51   |
| PRELIMINARY MEASUREMENT OF MAIN AND BIG<br>END BEARING SHELL SELECTION DATA | 52   |
| Replacing the timing control gear and the oil pump                          | 59   |
| Checking main journal installation clearance                                | 59   |
| Checking crankshaft end float                                               | 60   |
| PISTON-CONNECTING ROD ASSEMBLY                                              | 61   |
| 🗋 Removal                                                                   | 61   |
| Measuring the diameter of the pistons                                       | 62   |
| Conditions for correct gudgeon pin-piston coupling                          | 62   |
| Piston rings                                                                | 63   |
| CONNECTING ROD                                                              | 64   |
| Checking connecting rod alignment                                           | 65   |

Base - January 2003

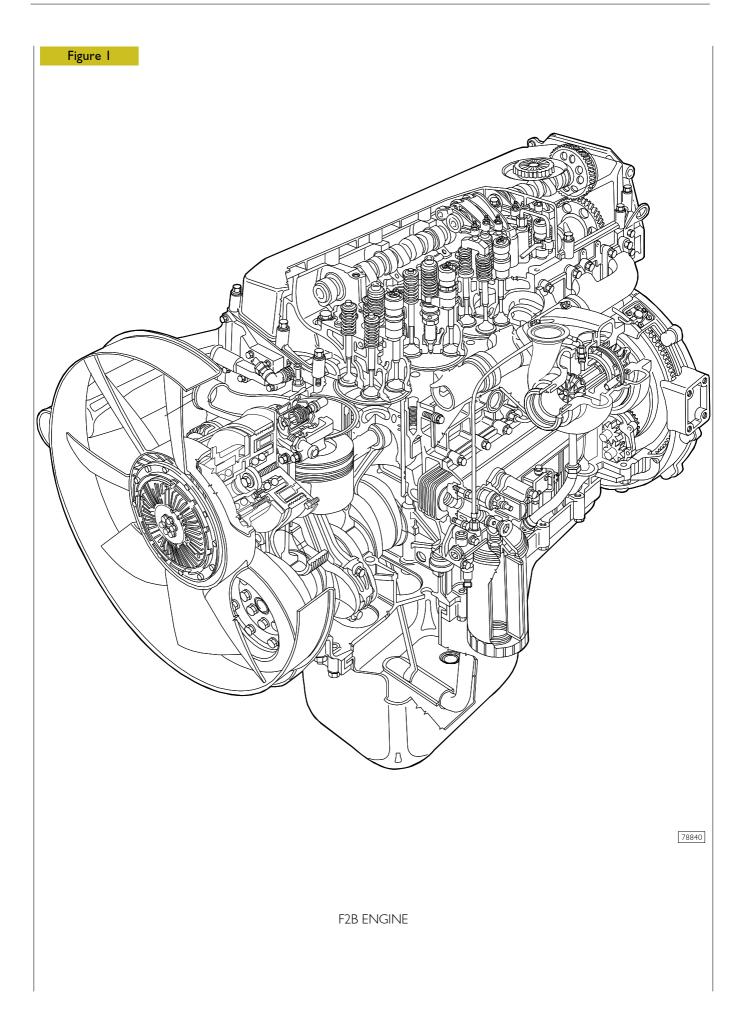
| 4   | ENGINE F2B                                                        |
|-----|-------------------------------------------------------------------|
|     |                                                                   |
|     | Mounting the connecting rod-piston assembly .                     |
|     | Mounting the piston rings                                         |
|     | Fitting the connecting rod-piston assembly into the piston liners |
|     | Piston protrusion check                                           |
|     | Checking assembly clearance of big end pins                       |
| CYI | LINDER HEAD                                                       |
|     | Valve removal                                                     |
|     | Checking the planarity of the head on the cylinder block          |
| VAI | _VE                                                               |
|     | Removing deposits and checking the valves                         |
| VA  | LVE GUIDES                                                        |
|     | Replacing of valve guides                                         |
|     | Replacing - Reaming the valve seats                               |
| REF | PLACING INJECTOR HOLDER CASES                                     |
|     | Removal                                                           |
|     | Checking protrusion of injectors                                  |
| TIM | IING GEAR                                                         |
|     | Checking cam lift and pin alignment                               |
|     | Camshaft                                                          |
|     | Bushes                                                            |
|     | Replacing camshaft bushes using beater 99360487                   |
|     | Removal                                                           |
|     | Assembly                                                          |
| VA  | LVE SPRINGS                                                       |
|     | Fitting the valves and oil seal ring                              |

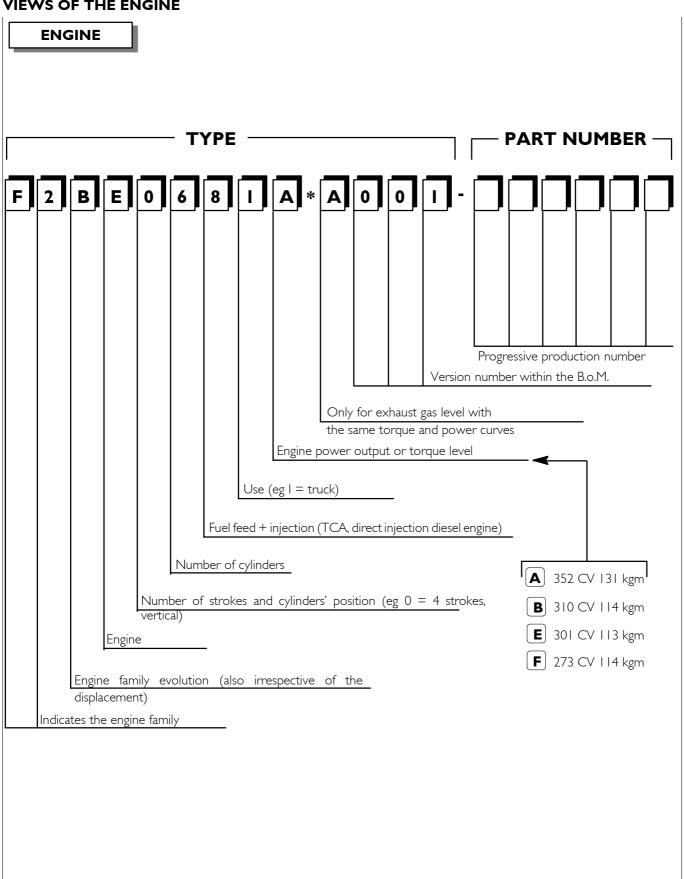
ROCKER SHAFT .....

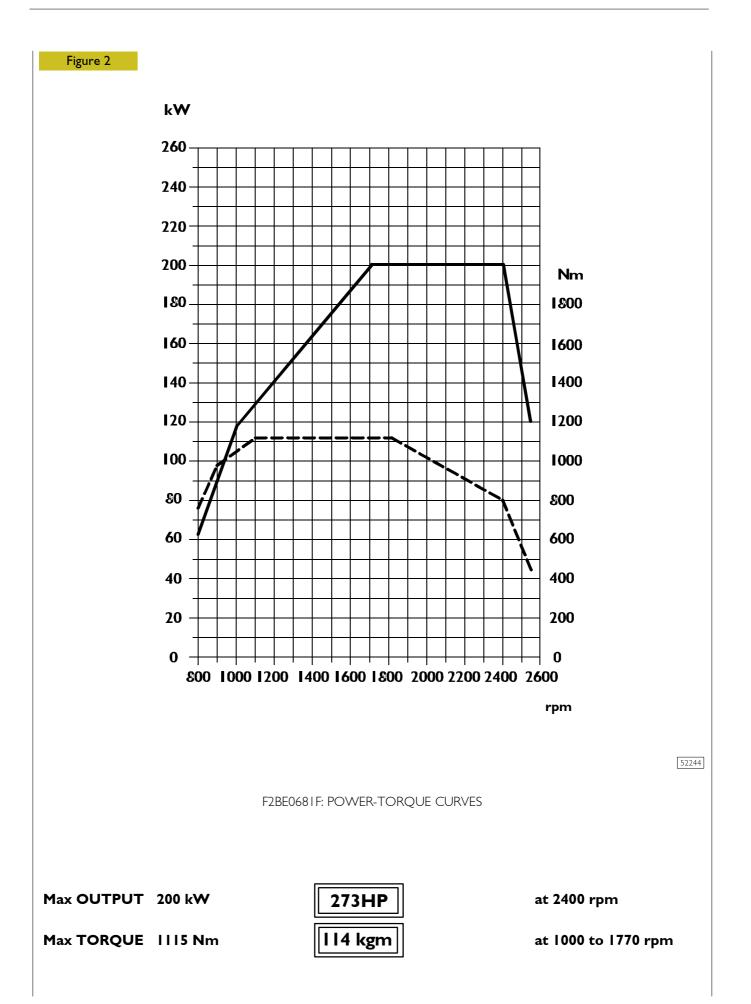
ASSEMBLING THE ENGINE ON THE BENCH .

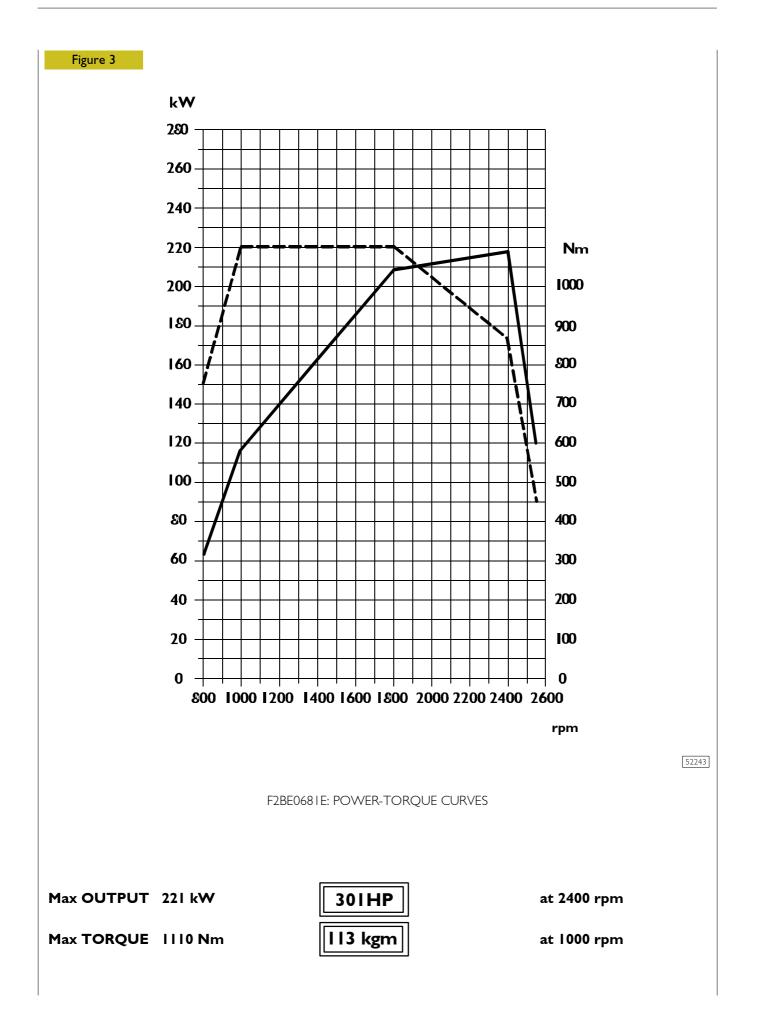
DIAGRAM SHOWING THE UNDERBLOCK FIXING SCREWS TIGHTENING ORDER .....

Rocker .....


|     | Fitting the connecting rod-piston assembly into the cylinder liners                              | 80  |
|-----|--------------------------------------------------------------------------------------------------|-----|
| ENC | GINE FLYWHEEL                                                                                    | 83  |
|     | Fitting engine flywheel                                                                          | 83  |
|     | Fitting camshaft                                                                                 | 84  |
|     | Fitting pump-injectors                                                                           | 85  |
|     | Fitting rocker-arm shaft assembly                                                                | 85  |
|     | Camshaft timing                                                                                  | 86  |
|     | Phonic wheel timing                                                                              | 88  |
|     | Intake and exhaust rocker play adjustment and pre-loading of rockers controlling pump injectors. | 89  |
| ENC | GINE COMPLETION                                                                                  | 90  |
| LUE | RICATION                                                                                         | 93  |
|     | Oil pump                                                                                         | 95  |
|     | Overpressure valve                                                                               | 95  |
|     | Oil pressure control valve                                                                       | 96  |
|     | Heat exchanger                                                                                   | 96  |
|     | By-pass valve                                                                                    | 97  |
|     | Thermostatic valve                                                                               | 97  |
|     | Engine oil filters                                                                               | 97  |
| СО  | OLING                                                                                            | 99  |
|     | Description                                                                                      | 99  |
|     | Operation                                                                                        | 99  |
|     | Water pump                                                                                       | 101 |
|     | Thermostat                                                                                       | 101 |
|     | Electromagnetic coupling                                                                         | 101 |
| TUF | RBOCHARGER                                                                                       | 102 |
| TUF | RBOCHARGING                                                                                      | 102 |
| TUF | RBO COMPRESSOR HOLSET HX 40V                                                                     | 104 |
|     | Actuator                                                                                         | 107 |
|     | Solenoid valve for VGT control                                                                   | 107 |
|     |                                                                                                  |     |

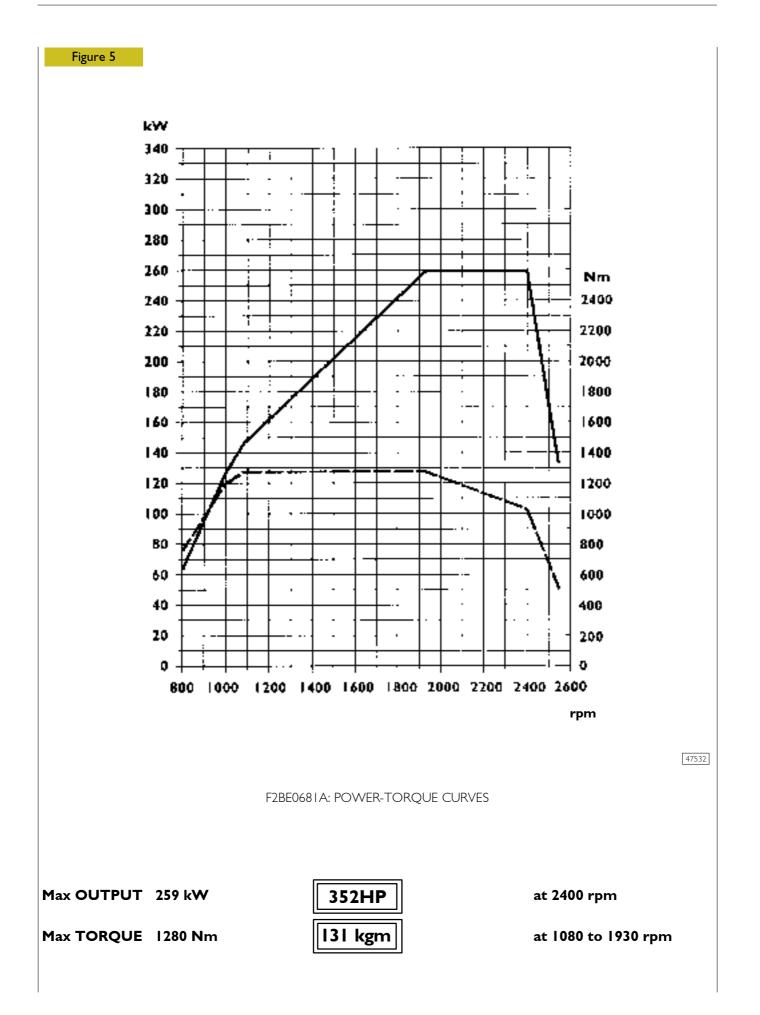

Print 603.93.141


Page


#### Page

| 1   |                          |     |
|-----|--------------------------|-----|
| FUE | EL FEED                  | 108 |
|     | Replacing injectors-pump | 109 |
|     | Injector-pump            | 109 |
|     | Fuel pump                | 109 |
|     | Injector Phases          | 110 |










ENGINE F2B

Stralis AT/AD



### GENERAL CHARACTERISTICS

|                            | Туре                             |                 | F2BE0681A    | F2BE0681B    | F2BE0681E        | F2BE0681F    |
|----------------------------|----------------------------------|-----------------|--------------|--------------|------------------|--------------|
| <b>A</b>                   | Cycle                            |                 |              | Diesel 4     | strokes          |              |
|                            | Feeding                          |                 |              | Turbochargeo | with aftercooler |              |
|                            | Injection                        |                 |              | Din          | ect              |              |
|                            | N. of cylinders                  |                 |              | 6 on         | -line            |              |
|                            | Diameter                         | mm              |              | 11           | 5                |              |
|                            | Stroke                           | mm              |              | 12           | 25               |              |
| <b>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓</b> | Total displacement               | cm <sup>3</sup> | 7790         |              |                  |              |
| Q                          | Compression ratio                |                 | 16 ± 0.8     |              |                  |              |
|                            | Max. power                       | KW<br>(HP)      | 259<br>(352) | 228<br>(310) | 221<br>(301)     | 200<br>(273) |
|                            |                                  | rpm             | 2400         | 2400         | 2400             | 2400         |
|                            | Max. torque                      | Nm<br>(Kgm)     | 280<br>( 3 ) | 5<br>(  4)   | 0 (  3)          | 5<br>(  4)   |
|                            |                                  | rpm             | 1080 to 1930 | 1000 to 1950 | 1000             | 1000 to 1770 |
|                            | Engine idling speed,<br>no load  | ,<br>rpm        |              | 525 :        | + 25             |              |
|                            | Maximum engine<br>speed, no load |                 |              |              |                  |              |
|                            |                                  | rpm             |              | 2760         | ± 20             |              |

| VALVE TIMING<br>opens before T.D.C.     A     17°       closes after B.D.C.     B     31°       opens before B.D.C.     D     48°       opens before B.D.C.     C     9°       For timing check     -     -       Image: State of the sta                                                                                                                                                                                                      | Туре                              | F2B                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------|
| image: specific specif | opens before T.D.C. A             |                       |
| X mm   Running mm   X mm   Nozzle type   Image: State of the sta                                                                                              |                                   | 48°                   |
| Injection<br>type Bosch     With electronically regulated injectors PDE 30<br>pump injectors controlled by overhead camshaft       Nozzle type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X { mr<br>mr<br>Running<br>X { mr | 0.35 to 0.45          |
| Nozzle type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Injection                         |                       |
| Injection order<br>Injection pressure bar<br>Injection pressure bar<br>Injection pressure bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nozzle type                       | _                     |
| Injector calibration bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Injection order                   | I - 4 - 2 - 6 - 3 - 5 |
| 「                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                       |

|                                                               | Туре                                                                                                         | F2B                                                                                      |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                               | SUPERCHARGING<br>Turbocharger                                                                                | Holset, with variable geometry                                                           |
|                                                               | type:                                                                                                        | HY 40 V                                                                                  |
|                                                               | LUBRICATION                                                                                                  | Forced by gear pump, pressure control valve, oil filter                                  |
| bar                                                           | Oil pressure, engine hot<br>(100 °C ± 5 °C):<br>at idling speed bar<br>at maximum speed bar                  | I.5<br>5                                                                                 |
| COOLING                                                       |                                                                                                              | By centrifugal pump, regulating thermostat, viscostatic fan, radiator and heat exchanger |
|                                                               | Water pump control                                                                                           | By belt                                                                                  |
|                                                               | Thermostat:                                                                                                  | N. I                                                                                     |
|                                                               | starts to open:                                                                                              | ~85 °C                                                                                   |
|                                                               | fully open:                                                                                                  | _                                                                                        |
|                                                               | OIL FILLING                                                                                                  |                                                                                          |
|                                                               | Total capacity at 1st filling<br>liters                                                                      | 28                                                                                       |
|                                                               | kg                                                                                                           | 25.5                                                                                     |
|                                                               | Capacity:<br>- engine sump min level<br>liters                                                               |                                                                                          |
| Fiat lubricants                                               | kg                                                                                                           | 12.5                                                                                     |
| Urania Turbo LD<br>(according to E3-96                        | - engine sump max level<br>liters                                                                            | 11.2                                                                                     |
| standard)<br>Urania Turbo<br>(according to E2-96<br>standard) | kg<br>- quantity in circulation that<br>does not flow back to the                                            | 23<br>21                                                                                 |
|                                                               | engine sump<br>liters<br>kg                                                                                  | 5                                                                                        |
|                                                               | - quantity contained in the<br>cartridge filter (which has to<br>be added to the cartridge filter<br>refill) |                                                                                          |
|                                                               | liters<br>kg                                                                                                 | 2.5<br>2.3                                                                               |

#### ASSEMBLY CLEARANCE DATA

|                                                                                                   | Туре                                                                                                        | F2B                                                                                   |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                                                                                   |                                                                                                             |                                                                                       |
| CYLINDER BLOCK A<br>MECHANISM COMPO                                                               |                                                                                                             | mm                                                                                    |
|                                                                                                   | Cylinder sleeve bore<br>upper<br>Ø 1<br>lower                                                               | 130.200 to 130.225<br>128.510 to 128.535                                              |
| Z L                                                                                               | Cylinder liners:<br>outer diameter:<br>upper<br>Ø 2<br>lower<br>length L                                    | 30. 6  to  30. 86<br> 28.475 to  28.500                                               |
|                                                                                                   | Cylinder sleeve -<br>crankcase bore<br>upper<br>lower                                                       | 0.014 to 0.064<br>0.010 to 0.060                                                      |
|                                                                                                   | Cylinder sleeve                                                                                             | ð 2                                                                                   |
|                                                                                                   | inside diameter G                                                                                           | A*     II5.000 to II5.012       Ø 3     II5.010 to II5.022       K     0.035 to 0.065 |
| * Available dia. class                                                                            | Pistons:<br>measuring dimension ><br>outside diameter Ø  <br>outside diameter Ø    <br>outside diameter Ø 2 | A•   14.888 to   4.900                                                                |
| <ul> <li>Class A pistons supp</li> <li>Class B pistons are f<br/>are not supplied as s</li> </ul> | olied as spares.<br>fitted in production only a                                                             | 114.898 to 114.910<br>nd                                                              |
|                                                                                                   | Piston - cylinder sleeve                                                                                    | 0.100 to 0.124                                                                        |
|                                                                                                   | Piston diameter 🖇                                                                                           | <u>_</u>                                                                              |
|                                                                                                   | Pistons protrusion >                                                                                        | < 0.32 to 0.99                                                                        |
| Ø3                                                                                                | Gudgeon pin 🖇                                                                                               | Ø 3 45.994 to 46.000                                                                  |
|                                                                                                   | Gudgeon pin - pin hous                                                                                      | ing 0.010 to 0.024                                                                    |

|             | Туре                                                     |                | F2B                                                      |
|-------------|----------------------------------------------------------|----------------|----------------------------------------------------------|
|             | туре                                                     |                | mm                                                       |
| ∬ ¥ xi      |                                                          | X *            | 2.71 to 2.74                                             |
|             | Piston ring grooves                                      | Х2             | 2.55 to 2.57                                             |
|             |                                                          | X3             | 4.02 to 4.04                                             |
|             | *measured on $\varnothing$ of []                         | 2 mm           |                                                          |
|             | Piston rings:<br>trapezoidal seal                        | SI*            | 2.575 to 2.595                                           |
| ¥ ∬ S I     | lune seal                                                | S2             | 2.470 to 2.490                                           |
|             | milled scraper ring<br>with slits and internal<br>spring | \$3            | 3.975 to 3.990                                           |
|             | *measured on $\varnothing$ of []                         | 2 mm           |                                                          |
|             |                                                          |                | 0.115 to 0.165                                           |
|             | Piston rings -                                           | С              | 0.060 to 0.100                                           |
|             | grooves                                                  | 2<br>3         | 0.030 to 0.065                                           |
|             | Piston rings                                             |                | _                                                        |
|             | Piston ring end gap in cylinder liners:                  | 1              |                                                          |
| ► { X2      | ,                                                        | ХI             | 0.35 to 0.50                                             |
| ×3          |                                                          | X2             | 0.70 to 0.96                                             |
|             |                                                          | X3             | 0.30 to 0.60                                             |
| (),<br>↓ ØI | Small end bush housi                                     | ng<br>Ø I      | 49.975 to 50.000                                         |
|             | Big end bearing<br>housing                               | Ø2             | Rated value 77.000 to 77.030                             |
| <b>∅</b> 2  | Selection classes Ø2                                     | <br>  2<br>  3 | 77.000 to 77.010<br>77.010 to 77.020<br>77.020 to 77.030 |
| Ø <b>4</b>  | Small end bush diame                                     | eter           |                                                          |
|             | outside                                                  | Ø4             | 50.055 to 50.080                                         |
|             | inside 🔟                                                 | Ø 3            | 46.015 to 46.030                                         |
| S S         | Big end bearing shell<br>Red<br>Green                    | S              | 2.000 to 2.010<br>2.011 to 2.020<br>2.021 to 2.020       |
|             | Yellow<br>Small end bush - hou                           | sing           | 2.021 to 2.030<br>0.055 to 0.105                         |
|             | Piston pin - bush                                        | JIIIR          | 0.015 to 0.036                                           |
|             |                                                          |                |                                                          |
| PRATS A     | Big end bearing shells                                   |                | 0.127 - 0.254 - 0.508                                    |
| $\bigcirc$  | Connecting rod weig                                      | ht<br>A        | g. 2890 to 2920                                          |
|             | Class                                                    | В              | g. 2921 to 2950                                          |
|             |                                                          | С              | g. 2951 to 2980                                          |

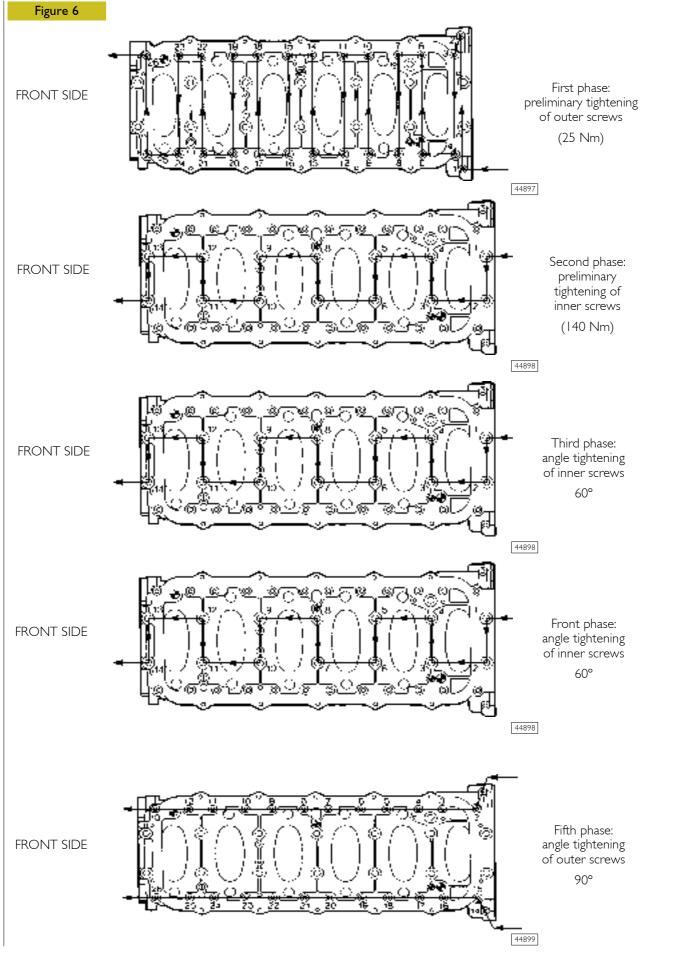
|                        |                                                       | F2B                                                                  |
|------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
|                        | Туре                                                  | mm                                                                   |
| X                      | Measuring dimension X                                 | 125                                                                  |
|                        | Max. connecting rod<br>axis misalignment              | 0.08                                                                 |
| │Ť                     | tolerance                                             |                                                                      |
|                        | Main journals Ø I<br>Selection class { 2              | Rated value 82.910 to 82.940<br>82.910 to 82.919<br>82.920 to 82.929 |
| ØI <u>Ø</u> 2          | Selection class23CrankpinsØ 2                         | 82.930 to 82.940<br>Rated value 72.915 to 72.945                     |
|                        | Selection class                                       | 72.915 to 72.924<br>72.925 to 72.934<br>72.935 to 72.945             |
|                        | Main bearing<br>shells SI                             |                                                                      |
|                        | Red<br>Green<br>Yellow ●                              | 3.000 to 3.010<br>3.011 to 3.020<br>3.021 to 3.030                   |
|                        | Big end bearing<br>shells S2<br>Red<br>Green          | 2.000 to 2.010<br>2.011 to 2.020<br>2.021 to 2.030                   |
|                        | Yellow ●<br>Main bearing housings Ø3                  | Rated value 89.000 to 89.030                                         |
| Ø 3                    | Selection class $\begin{cases} 1\\ 2\\ 3 \end{cases}$ | 89.000 to 89.009<br>89.010 to 89.019<br>89.020 to 89.030             |
|                        | Bearing shells -<br>main journals                     | 0.040 to 0.080                                                       |
| -++                    | Bearing shells -<br>big ends                          | 0.035 to 0.075                                                       |
| IVECO                  | Main bearing shells                                   | 0.127 - 0.254 - 0.508                                                |
| PRATES A               | Big end bearing shells                                | 0.127 - 0.254 - 0.508                                                |
|                        | Main journal,<br>thrust bearing XI                    | 39.96 to 40.00                                                       |
| X2                     | Main bearing housing,<br>thrust bearing X2            | 32.94 to 32.99                                                       |
| × 3                    | Thrust washer<br>halves X3                            | 3.38 to 3.43                                                         |
|                        | Driving shaft shoulder                                | 0.11 to 0.30                                                         |
|                        | Alignment                                             | ≤ 0.05                                                               |
|                        | Ovality I - 2                                         | 0.010                                                                |
|                        | Taper I - 2                                           | 0.010                                                                |
| • Fitted in production | n only and not supplied as spa                        | res                                                                  |

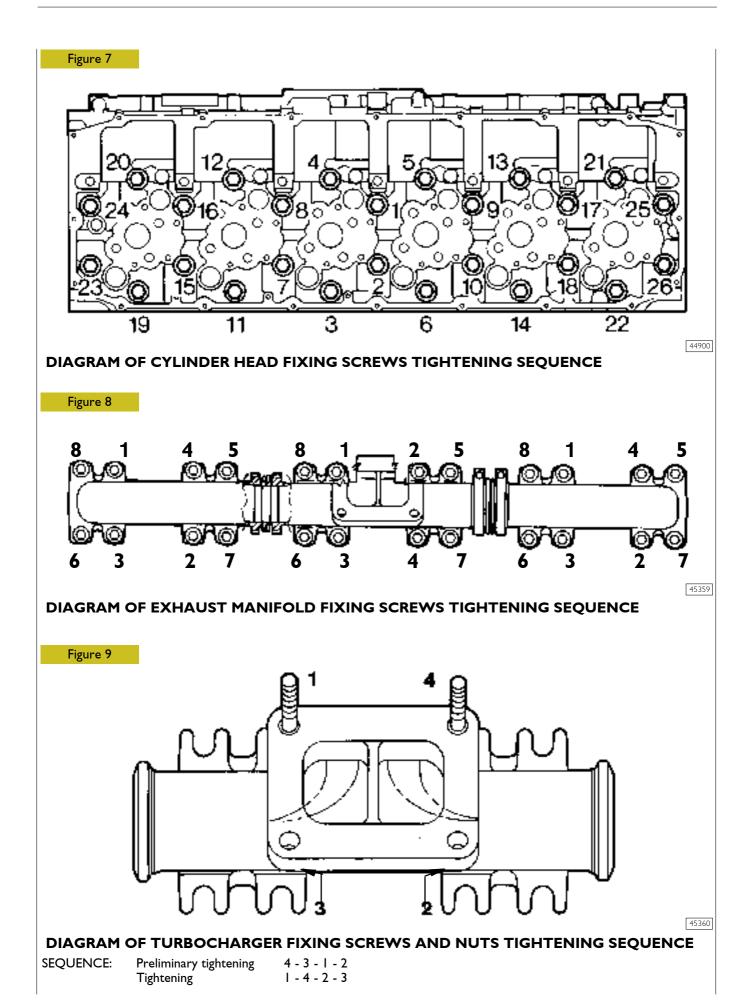
|                  | Туре                                                                                                                                                   | F2B                                                               |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| CYLINDER HEAD    | S - VALVE TRAIN                                                                                                                                        | mm                                                                |
|                  | Valve guide housings<br>in cylinder head<br>Ø1                                                                                                         | 12.980 to 12.997                                                  |
|                  | Ø 2<br>Valve guide 🚣 Ø 3                                                                                                                               | 8.023 to 8.038<br>  3.0 2 to   3.025                              |
| - cS             | Valve guides - housings<br>in the cylinder heads                                                                                                       | 0.015 to 0.045                                                    |
|                  | Valve guide                                                                                                                                            | _                                                                 |
|                  | Valves:<br>$\swarrow 1 \qquad $ | 7.985 to 8.000<br>60° 30′ ± 7′ 30″<br>7.985 to 8.000<br>45° + 15′ |
|                  | Valve stem and its guide                                                                                                                               | 0.023 to 0.053                                                    |
|                  | Housing in head for valve<br>seat<br>$\swarrow$ Ø1<br>$\swarrow$ Ø1                                                                                    | 41.985 to 42.020<br>40.985 to 41.020                              |
| Ø 2              | Outside diameter of valve seat; angle of valve seat in cylinder head:<br>$\swarrow 2$ $\alpha$                                                         | 42.060 to 42.075<br>60° - 30'                                     |
| - α              | $ \begin{array}{c}                                     $                                                                                               | 41.060 to 41.075<br>45° - 30′                                     |
| ×                | Recessing of valve X                                                                                                                                   | 0.5 to 0.8<br>1.6 to 1.9                                          |
| -\$ <sup>-</sup> | Between valve<br>seat and head                                                                                                                         | 0.040 to 0.090                                                    |

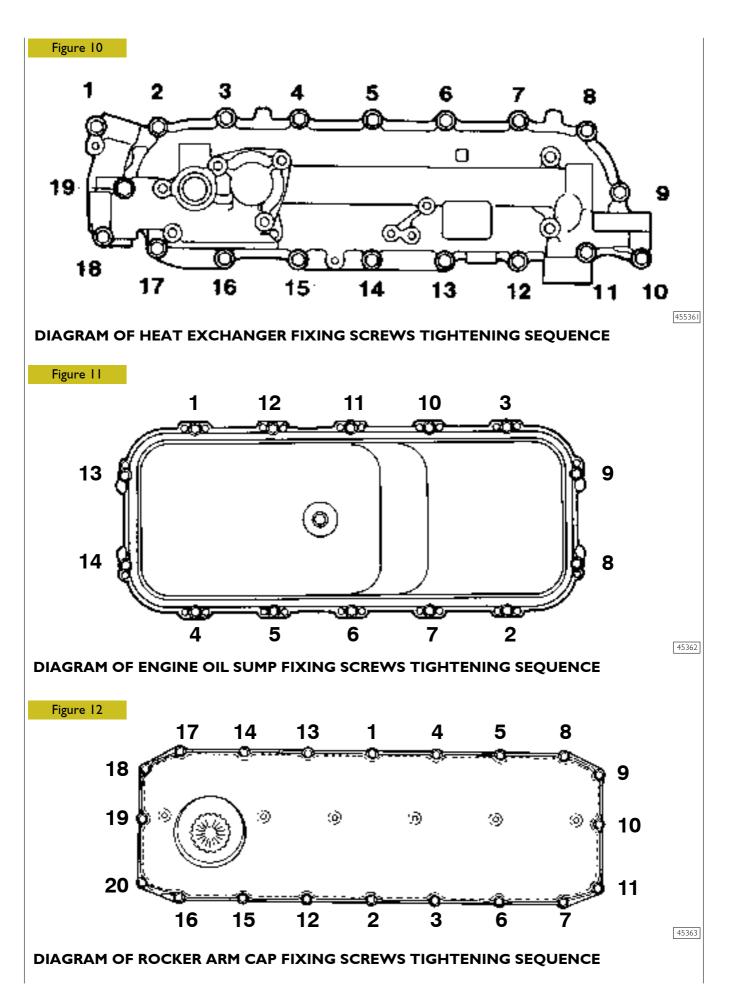
|   | Туре                                                                      | F2B              |
|---|---------------------------------------------------------------------------|------------------|
|   |                                                                           | mm               |
|   | Valve outside spring                                                      |                  |
|   | height:<br>free height H                                                  | 62.6             |
|   | under a load of:<br><b>2</b> N 454 ± 22 HI                                | 48.5             |
|   | N 840 ± 42 H2                                                             | 36.5             |
| × | Injector protrusion X                                                     | 0.7              |
|   | Camshaft bush housing fitted in the cylinder head:<br>I $\Rightarrow$ 7 Ø | 80.000 to 80.030 |
|   | Camshaft journal diameter:<br>I ⇒ 7 Ø                                     | 75.924 to 75.940 |
| Ø | Camshaft bushing outer<br>diameter: Ø                                     | 80.090 to 80.115 |
|   | Camshaft bushing<br>inner diameter: Ø                                     | 75.990 to 76.045 |
|   | Bushings and housings in engine block                                     | 0.060 to 0.115   |
|   | Bushings and journals                                                     | 0.050 to 0.121   |
|   | Cam lift:<br>⊏次                                                           | 8.07             |
| Н |                                                                           | 7.63             |
|   |                                                                           | 8.80 to 8.82     |
|   | Rocker shaft Ø I                                                          | 37.984 to 38.000 |
|   |                                                                           |                  |

|                   | Туре                                       | F2B                       |
|-------------------|--------------------------------------------|---------------------------|
|                   |                                            | mm                        |
|                   | Bushing housing in rocker arms             |                           |
|                   |                                            | 41.000 to 41.016          |
|                   |                                            | 53.000 to 53.019          |
| Ø                 |                                            | 42.000 to 42.016          |
|                   | Bushing outer diameter for rocker arms:    |                           |
| ¥                 |                                            | 41.097 to 41.135          |
| Ø                 |                                            | 53.105 to 53.156          |
| *                 |                                            | 42.066 to 42.091          |
|                   | Bushing inner diameter<br>for rocker arms: |                           |
| •                 |                                            | 38.025 to 38.041          |
| Ø                 |                                            | 50.025 to 50.041          |
| T                 |                                            | 38.015 to 38.071          |
|                   | Between bushings and<br>housings           |                           |
|                   |                                            | 0.081 to 0.135            |
| 5                 |                                            | 0.086 to 0.156            |
|                   |                                            | 0.050 to 0.091            |
|                   | Between rocker arms and shaft              |                           |
|                   |                                            | 0.025 to 0.057            |
|                   |                                            | 0.225 to 0.057            |
|                   |                                            | 0.015 to 0.087            |
|                   | DCHARGER                                   |                           |
| Type<br>End float |                                            | HOLSET, variable geometry |
| Radial play       |                                            | _                         |

### **TIGHTENING TORQUES**


| PART                                                                          |             | TORQUE            |                   |
|-------------------------------------------------------------------------------|-------------|-------------------|-------------------|
|                                                                               |             | Nm                | kgm               |
| Under-basement fastening screws to cylinder block (see Figure 6) $ig lpha$    |             |                   |                   |
| Duter screws First stage : pre-tightening                                     | M10x1.25    | 25                | 2.5               |
| nner screws Second stage : pre-tightening                                     | MI6x2       | 140               | 14                |
| nner screws Third stage : angle closing                                       | MI6x2       |                   | 0°                |
| nner screws Fourth stage : angle closing                                      | MI6x2       |                   | 0°                |
| Outer screws Fifth stage : angle closing                                      | M10x1,5     |                   | °C                |
| Pipe union for piston cooling nozzle                                          | M12X1.5     | 35 ± 2            | 3.5 ± 0.2         |
| ntercooler fastening screws to cylinder block $\blacklozenge$ (see Figure 10) |             |                   |                   |
| pre-tightening                                                                |             | 11.5 <b>±</b> 3.5 | 1.15 ± 0.35       |
| tightening                                                                    |             | 19 ± 3            | 1.9 ± 0.3         |
| Plug                                                                          |             | 125 <b>±</b> 15   | 12.5 <b>±</b> 1.5 |
| Spacer and oil sump fastening screws (see Figure 11)                          |             | 41.5 ± 3.5        | 4.1 ± 0.3         |
| Gearcase fastening screws to cylinder block                                   |             | 41.5 ± 3.5        | 4.1 ± 0.3         |
| 6 /                                                                           |             | 63 ± 7            | 6.3 ± 0.7         |
|                                                                               |             | 9 ± 3             | 1.9 ± 0.3         |
| Cylinder head fastening screw: (see Figure 7) ♦                               |             | /                 | 0.0               |
|                                                                               |             | 50                | 5                 |
| First stage pre-tightening<br>Second stage pre-tightening                     |             | 100               | 5                 |
| Third stage angle closing                                                     |             |                   | 0°                |
| Fourth stage angle closing                                                    |             |                   | 5°                |
| Rocker arm shaft fastening screw $\blacklozenge$                              |             | 1.                | J                 |
| First stage pre-tightening                                                    |             | 40                | 4                 |
| Second stage pre-tightening                                                   |             |                   | )°                |
| Locknut for rocker arm adjusting screw ♦                                      |             | 39 ± 5            | 3.9 ± 5           |
| Screws for injector fastening brackets $\blacklozenge$                        |             | 36.5              | 3.65              |
| Shoulder plate fastening screws to head $\blacklozenge$                       |             | 23.5              | 2.35              |
|                                                                               |             |                   |                   |
| Engine support bracket fastening screws to cylinder head                      |             | 74 ± 8            | 7.4 ± 0.8         |
| Gear fastening screws to camshaft: ♦                                          |             |                   |                   |
| First stage pre-tightening                                                    |             | 50                | 5                 |
| Second stage pre-tightening                                                   |             |                   | 0°                |
| Phonic wheel fastening screws to distribution gear                            |             | 8.5 ± 1.5         | 0.8 ± 0.1         |
| xhaust pipe fastening screws • (see Figure 8)                                 |             |                   |                   |
| pre-tightening                                                                |             | 32.5 <b>±</b> 7.5 | 3.2 ± 0.7         |
| tightening                                                                    |             | 47 ± 2.5          | 4.7 ± 0.2         |
| ngine brake actuator cylinder fastening screws                                |             | 24.5 ± 2.5        | 2.4 ± 0.2         |
| Connecting rod cap fastening screws: ♦                                        |             |                   |                   |
| irst stage pre-tightening                                                     |             | 50                | 5                 |
| Second stage pre-tightening                                                   |             | 4(                | 0°                |
| Engine flywheel fastening screws: ♦                                           | M16x1.5x58  |                   |                   |
| -irst stage pre-tightening                                                    |             | 100               | 10                |
| Second stage pre-tightening                                                   |             | 61                | °C                |
| Engine flywheel fastening screws: ♦                                           | MI6x1.5x110 |                   |                   |
| First stage pre-tightening                                                    |             | 100               | 10                |
| Second stage pre-tightening                                                   |             | 12                | 0°                |
| lywheel pulley fastening screws to crankshaft : ♦                             |             |                   |                   |
| First stage pre-tightening                                                    |             | 70                | 7                 |
|                                                                               |             | 5                 | 0°                |
| Second stage pre-tightening                                                   |             | . 1               | 0                 |

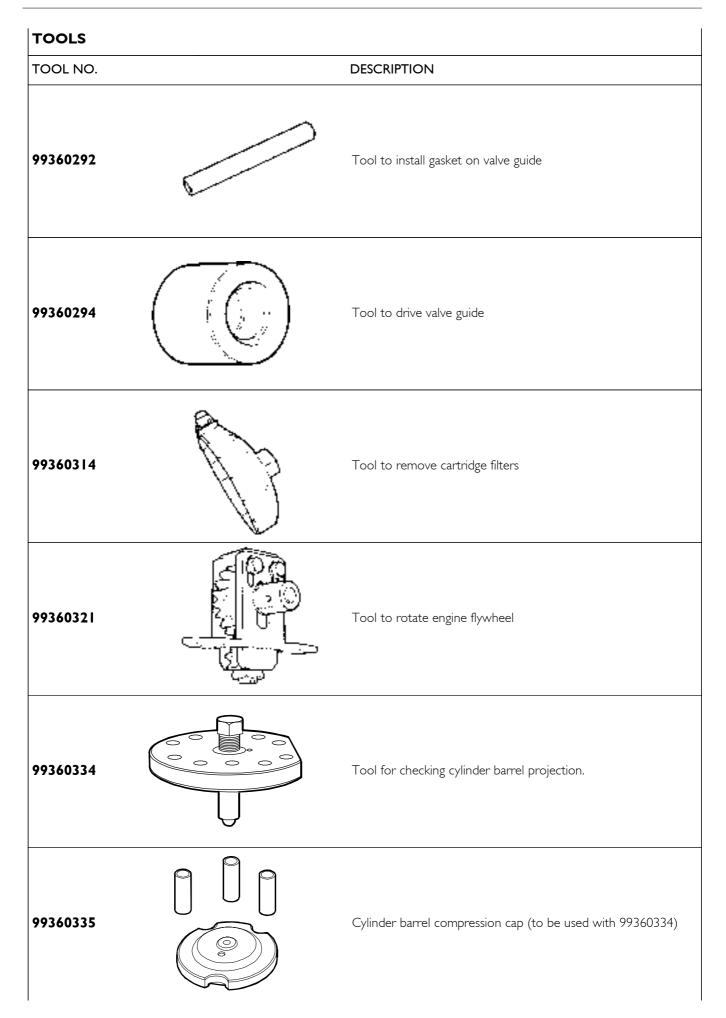

### TIGHTENING TORQUES


| PART                                                      |                                             | TORQUE               |                        |  |
|-----------------------------------------------------------|---------------------------------------------|----------------------|------------------------|--|
|                                                           |                                             | Nm                   | kgm                    |  |
| Damper flywheel fastening                                 | screws: ♦                                   | 5 ±  5               | .5 ±  .5               |  |
| Idler gear pin fastening scre                             | ews: ♦                                      |                      |                        |  |
| First stage                                               | pre-tightening                              | 30                   | 3                      |  |
| Second stage                                              | pre-tightening                              | 9                    | 0°                     |  |
| Idle gear link rod fastening                              | screw                                       | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Oil pump fastening screw                                  |                                             | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Oil pump suction rose fast                                | ening screw                                 | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Front cover fastening screv                               | v to cylinder block 🔶                       | 19 ± 3               | 1.9 ± 0.3              |  |
| Control unit fastening scre                               | w to cylinder block ♦                       | 19 ± 3               | 1.9 ± 0.3              |  |
| Supply pump fastening scre                                | ew to gearcase ♦                            | 19 ± 3               | 1.9 ± 0.3              |  |
| Fuel filter support fastening                             | screw to cylinder head ♦                    | 37 ± 3               | 3.7 ± 0.3              |  |
| Turbo-compressor fastenir<br>pre-tightening<br>tightening | ng screws and nuts • (see Figure 9)         | 32.5 ± 7.5<br>46 ± 2 | 3.2 ± 0.7<br>4.6 ± 0.2 |  |
| Water pump fastening scre                                 | ew to cylinder block                        | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Pulley fastening screw to h                               | ub                                          | 55 <b>±</b> 5        | 5.5 ± 0.5              |  |
| Rocker arm cover fastening                                | g screws (see Figure 12)                    | 9                    | 0.9                    |  |
| Thermostat box fastening                                  | screws to cylinder head                     | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Automatic tightener fasten                                | ing screws to cylinder block                | 45 ± 5               | 4.5 ± 0.5              |  |
| Fixed tightener fastening so                              | rews to cylinder block                      | 105 ± 5              | 10.5 ± 0.5             |  |
| Fan support fastening screv                               | vs to cylinder block                        | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Starter fastening screws                                  |                                             | 44 ± 4               | 4 ± 0.4                |  |
| Air heater on cylinder hea                                | d                                           | 30 ± 3               | 3 ± 0.3                |  |
| Air compressor fastening s                                | crew to cylinder head                       | 74 ± 8               | 7.4 ± 0.8              |  |
| Air compressor control ge                                 | ar fastening nut                            | 170                  | 7 ±                    |  |
| Hydraulic power steering p                                | oump gear fastening nut                     | 46.5 ± 4.5           | 4.6 ± 0.4              |  |
| Air conditioner compresso                                 | r fastening screw to support                | 24.5 ± 2.5           | 2.4 ± 2.5              |  |
| Air conditioner compresso                                 | r support fastening screw to cylinder block | 44 ± 4               | 4.4 ± 0.4              |  |
| Alternator support fastenir                               | ng screw to cylinder block                  | 44 ± 4               | 4.4 ± 0.4              |  |
| Alternator bracket fastenir                               | g screw to cylinder block                   | 24.5 ± 2.5           | 2.4 ± 0.2              |  |
| Water pipe unions                                         |                                             | 35                   | 3.5                    |  |
| Water temperature sensor                                  |                                             | 32.5 ± 2.5           | 3.2 ± 0.2              |  |

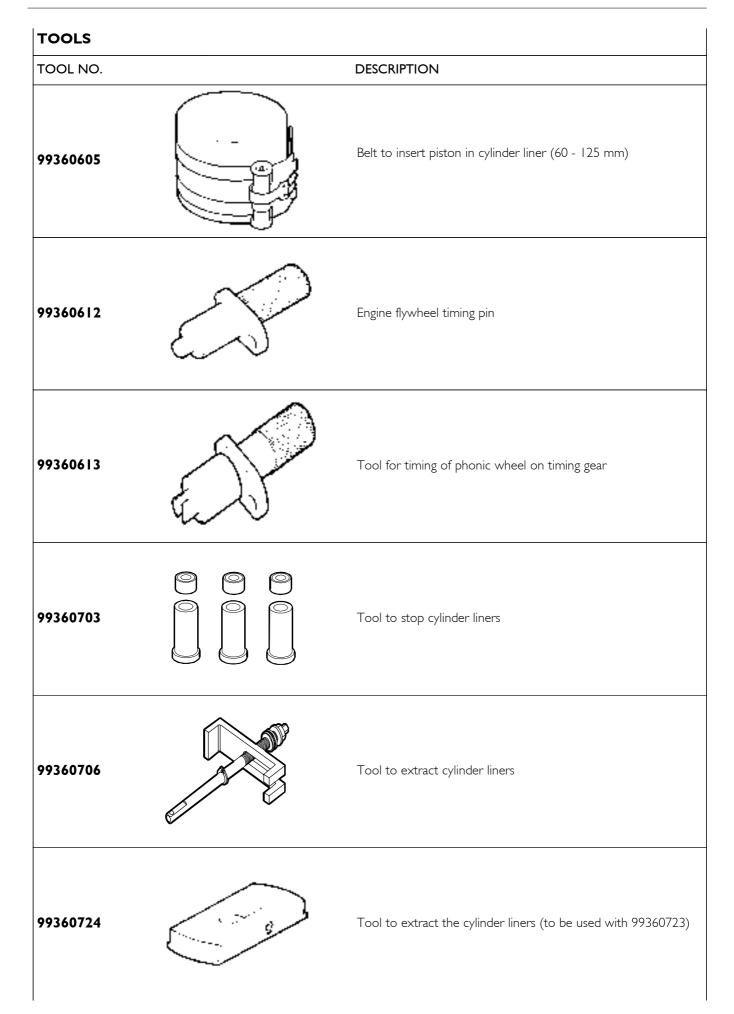
### **TIGHTENING TORQUES**

| PART                                         | TORQUE            |                  |  |
|----------------------------------------------|-------------------|------------------|--|
|                                              | Nm                | kgm              |  |
| Engine brake solenoid valve fastening screws | 32.5 ± 2.5        | 3.2 ± 0.2        |  |
| Flywheel rev sensor fastening screw          | 8 ± 4             | 0.8 ± 0.2        |  |
| Camshaft rev sensor fastening screw          | 8 ± 2             | 0.8 ± 0.2        |  |
| P.D.E solenoid connector fastening screw     | 1.62 ± 0.3        | 0.1 ± 0.3        |  |
| Overboost pressure sensor fastening screw    | 8 ± 2             | 0.8 ± 0.2        |  |
| Absolute pressure sensor fastening screw     | 22.5 ± 2.5        | 2.2 ± 0.2        |  |
| P.W.M. control valve fastening screw/nut     | 8 ± 2             | 0.8 ± 0.2        |  |
| Fuel/coolant temperature sensor              | 35                | 3.5              |  |
| Coolant temperature indicator                | 23.5 ± 2.5        | 2.3 ± 0.2        |  |
| Filter clogging sensor                       | 10                | ļ                |  |
| Oil temperature switch                       | 25 ± 1            | 2.5 ± 0.1        |  |
| Oil pressure sensor                          | 25 ± 1            | 2.5 ± 0.1        |  |
| Oil clogging sensor                          | 55 ± 5            | 5.5 ± 0.5        |  |
| Electric wire fastening screw                | 8 ± 2             | 0.8 ± 0.2        |  |
| Heater fastening screw                       | 12.5 <b>±</b> 2.5 | 1.2 <b>±</b> 0.2 |  |

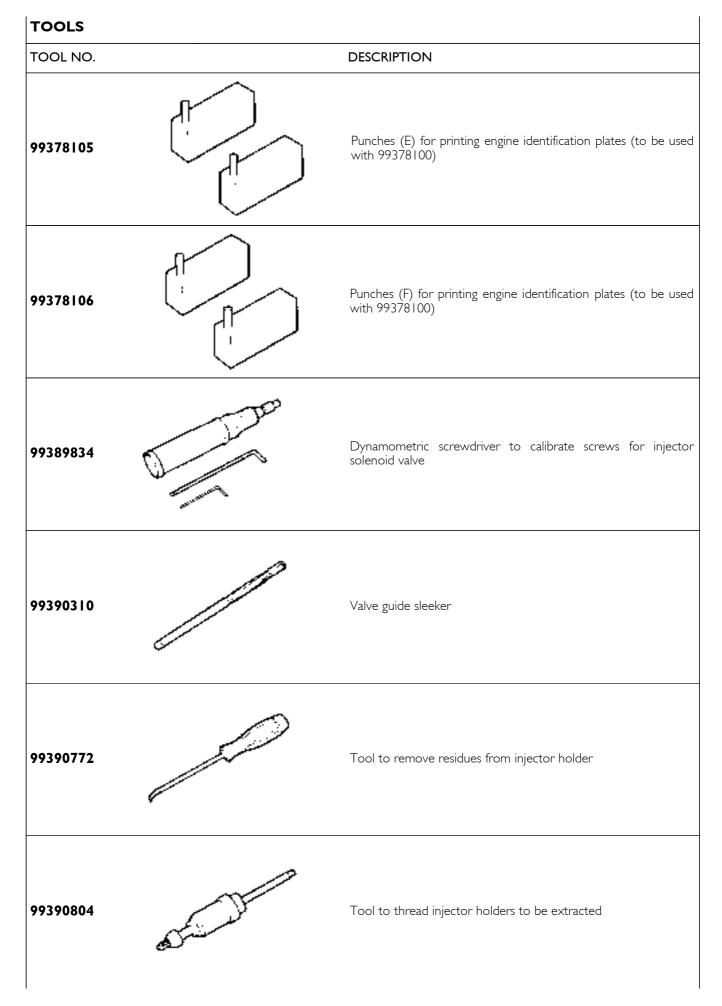






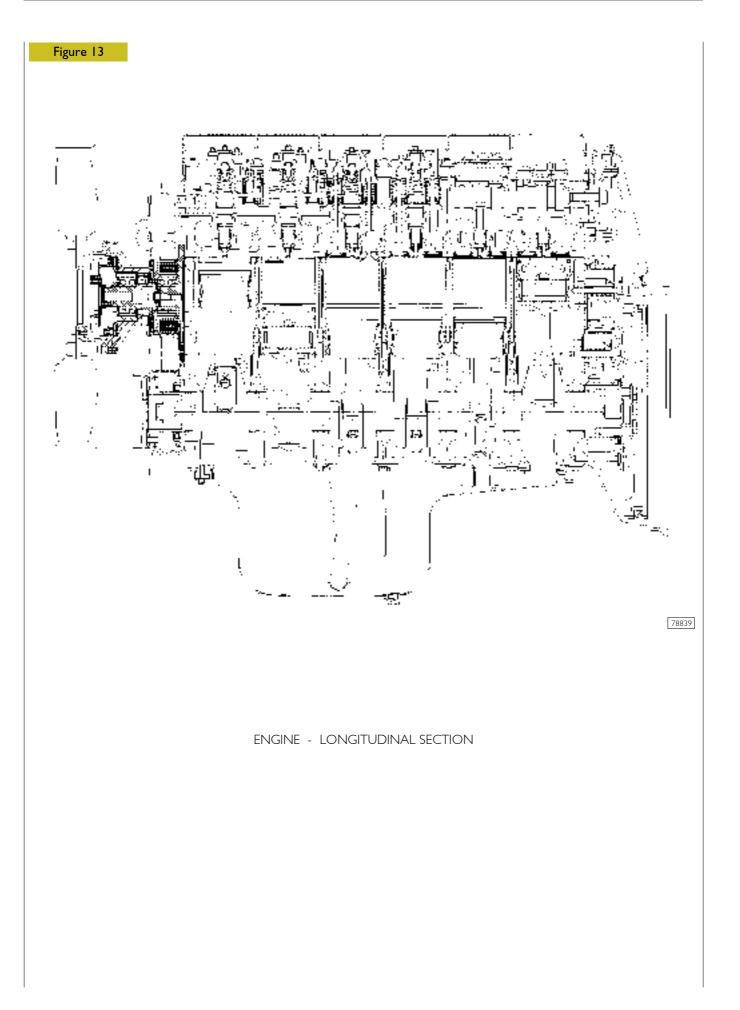


# TOOLS TOOL NO. DESCRIPTION Full-optional tool-kit to rectify valve seat 99305019 99305047 Equipment for spring load check 99322230 Rotary telescopic stand 9934005 I Extractor for crankshaft front gasket 99340052 Extractor for crankshaft rear gasket 5 99340205 Percussion extractor

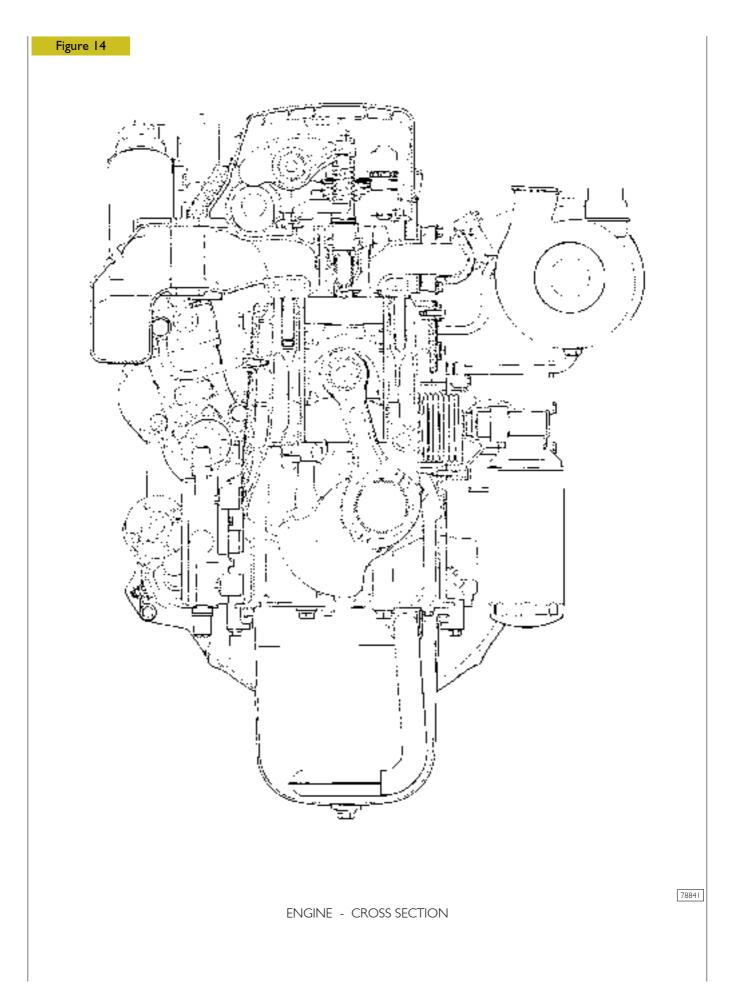
| TOOLS    |      |                                                        |
|----------|------|--------------------------------------------------------|
| TOOL NO. |      | DESCRIPTION                                            |
| 99342148 |      | Injector extractor                                     |
| 99342149 |      | Extractor for injector-holder                          |
| 99346245 | Co P | Tool to install the crankshaft front gasket            |
| 99346246 |      | Tool to install the crankshaft rear gasket             |
| 99348004 |      | Universal extractor for 5 to 70 mm internal components |
| 99350072 |      | Box wrench for transmission gear support fixing screws |

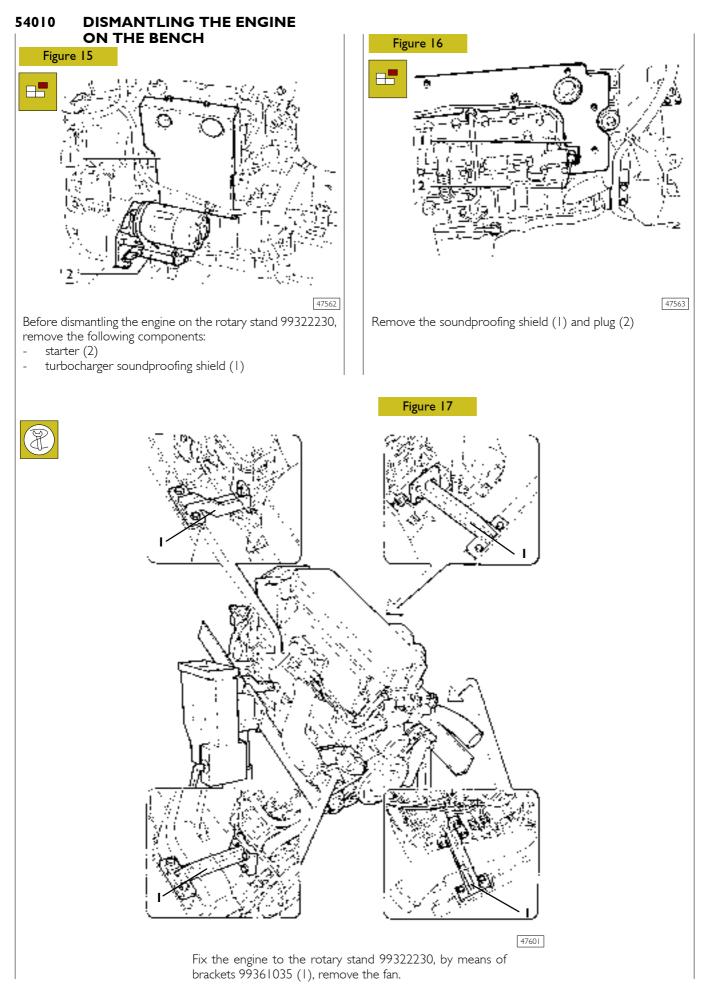

## TOOLS TOOL NO. DESCRIPTION 99350074 Box wrench for block junction bolts to the underblock A Skid retaining tools (12+6) for rocker arm adjusting screws during 99360144 rocker arm shaft removal/ refitting 99360177 Injector housing plug Pincers for removing and refitting circlips and pistons 99360184 (105-160 mm) 99360264 Tool to take down-fit engine valves 99360288 Tool to remove valve guide

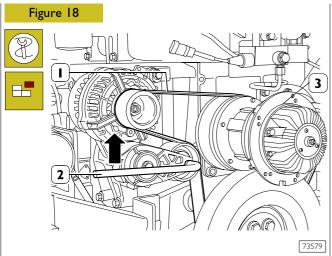


# TOOLS TOOL NO. DESCRIPTION 99360351 Tool to stop engine flywheel Tool to take down and fit back camshaft bushes 99360487 ŝ 99360500 Tool to lift crankshaft 99360551 Bracket to take down and fit engine flywheel 99360558 Tool to lift and transport rocker shaft 99360585 Balance for lifting and handling engine



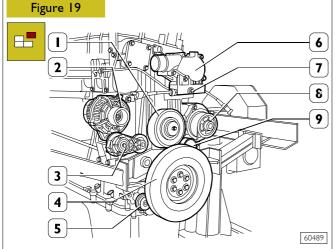


## TOOLS TOOL NO. DESCRIPTION 99361035 Brackets fixing the engine to rotary stand 99322230 and the second 99365054 Tool for injector holder heading Tool to detect cylinder liner projections (use with 99395603) 99370415 Tool for printing engine identification plates (to be used with 99378100 special punches) Punches (A) for printing engine identification plates (to be used 99378101 with 99378100) Punches (B) for printing engine identification plates (to be used 99378102 with 99378100)





| TOOLS    |      |                                                                           |
|----------|------|---------------------------------------------------------------------------|
| TOOL NO. |      | DESCRIPTION                                                               |
| 99394014 |      | Guide bush (to be used with 99394041 or 99394043)                         |
| 99394041 |      | Cutter to rectify injector holder housing (to be used with<br>99394015)   |
| 99394043 | en S | Reamer to rectify injector holder lower side (to be used with 99394015)   |
| 99395215 | 0    | Gauge for centre distance check between camshaft and idle gear            |
| 99395216 | 90   | Measuring pair for angular tightening with 1/2" and 3/4" square couplings |
| 99395363 |      | Complete square to check connecting rod squaring                          |

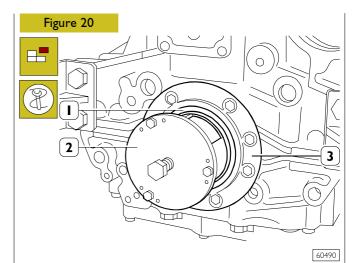
| TOOLS    |                                        |
|----------|----------------------------------------|
| TOOL NO. | DESCRIPTION                            |
| 99395603 | Dial gauge (0 - 5 mm)                  |
| 99395687 | Reaming gauge (50-178 mm)              |
| 99396033 | Centering ring of crankshaft front cap |
|          |                                        |
|          |                                        |
|          |                                        |
|          |                                        |



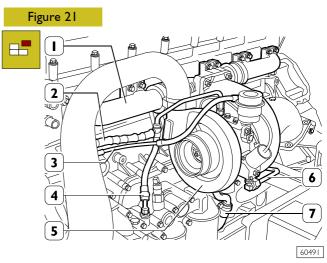






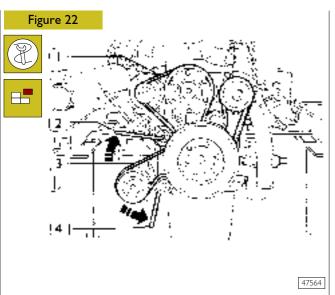


Using an appropriate tool (2), operate in the direction of the arrow, and remove the belt (1) driving the water pump, alternator and fan.

Take out the screws and remove the electromagnetic coupling (3).

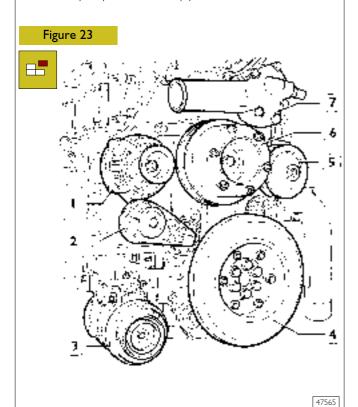



Remove the following components:

- thermostat unit (6) fitted with turbine actuator pressure sensor (7);
- alternator (2);
- pulley support (1);
- water pump (8) and piping;
- automatic belt tightener support (3);
- fixed belt tightener (9);
- damping flywheel (4) and pulley underneath it;
- automatic belt tightener (5);
- disconnect all the electric connections and the sensors.

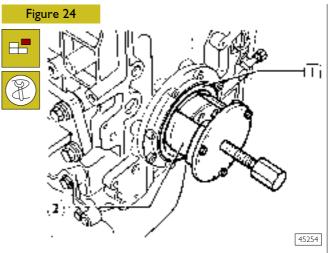



Fit the extractor 99340053 (2) and remove the engine crankshaft seal gasket (1), remove the cover (3).

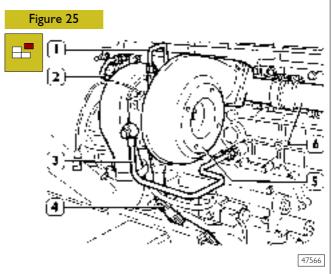



Remove the following components:

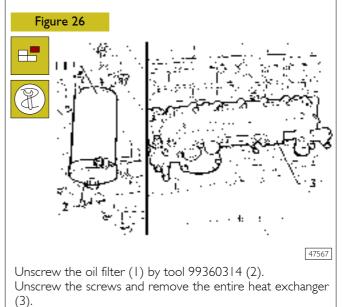
- water outlet line (2);
- oil delivery line (4);
- actuator air line (3);
- water delivery line (6);
- oil return line (7);
- turbocharger (5);
- exhaust manifold (1).

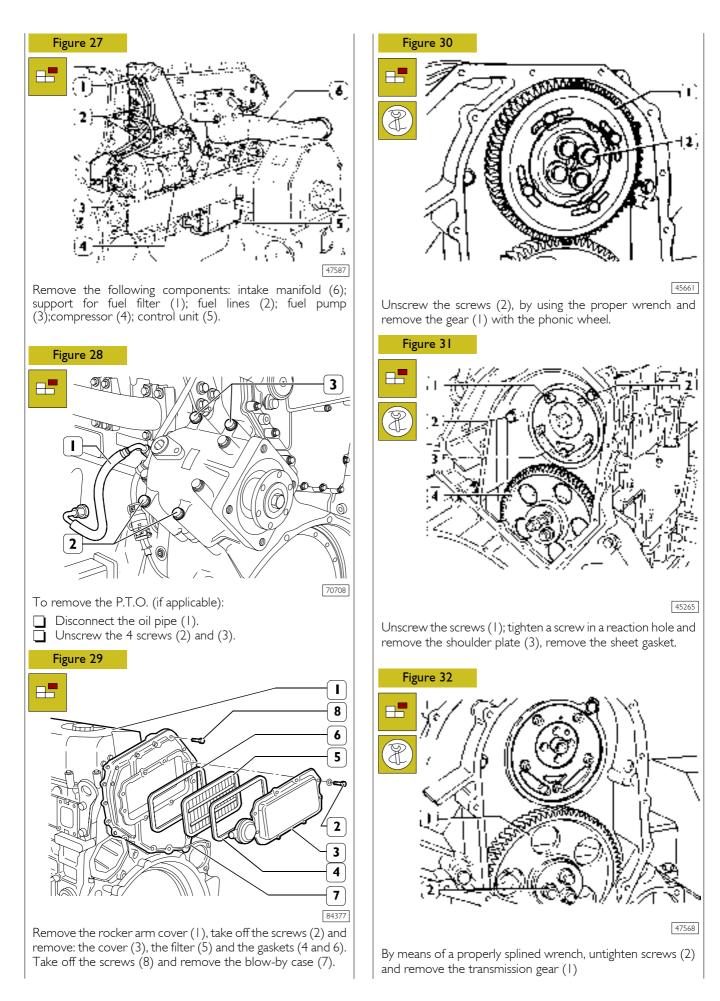


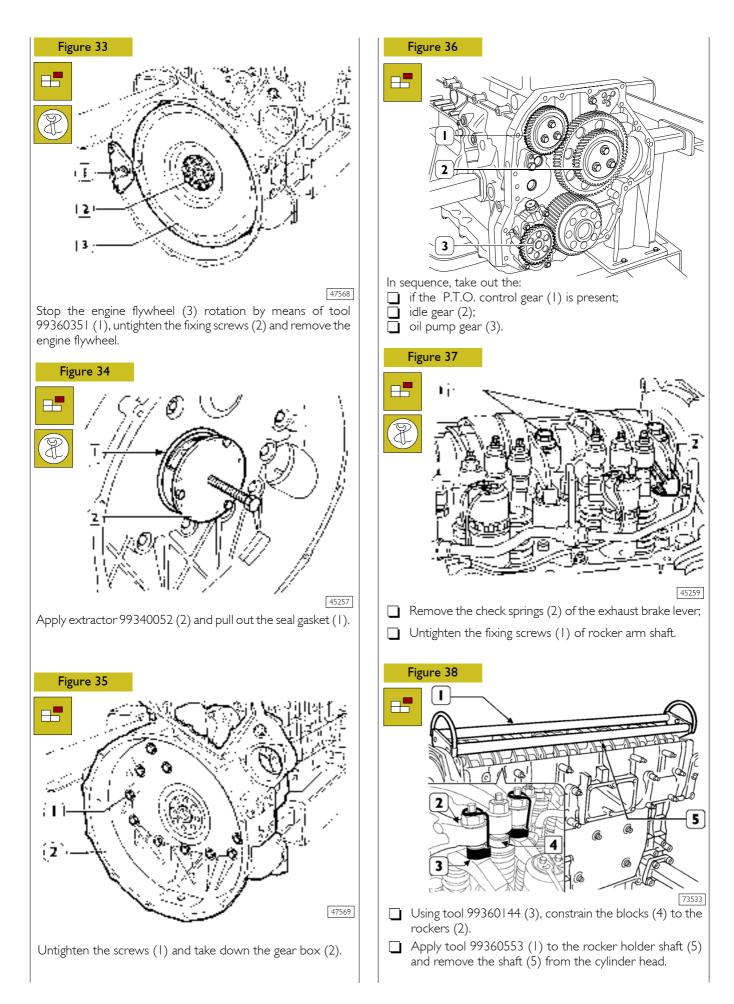

Load the belt tensioner spring by tool (4), acting in the direction shown by the arrow, on the head of the screw fixing the roller. The screw cannot be untightened as the thread is counterclock-wise. Remove the belt (3). By tool (2), act in the direction shown by the arrow and remove the fan, alternator and water pump control belt (1).

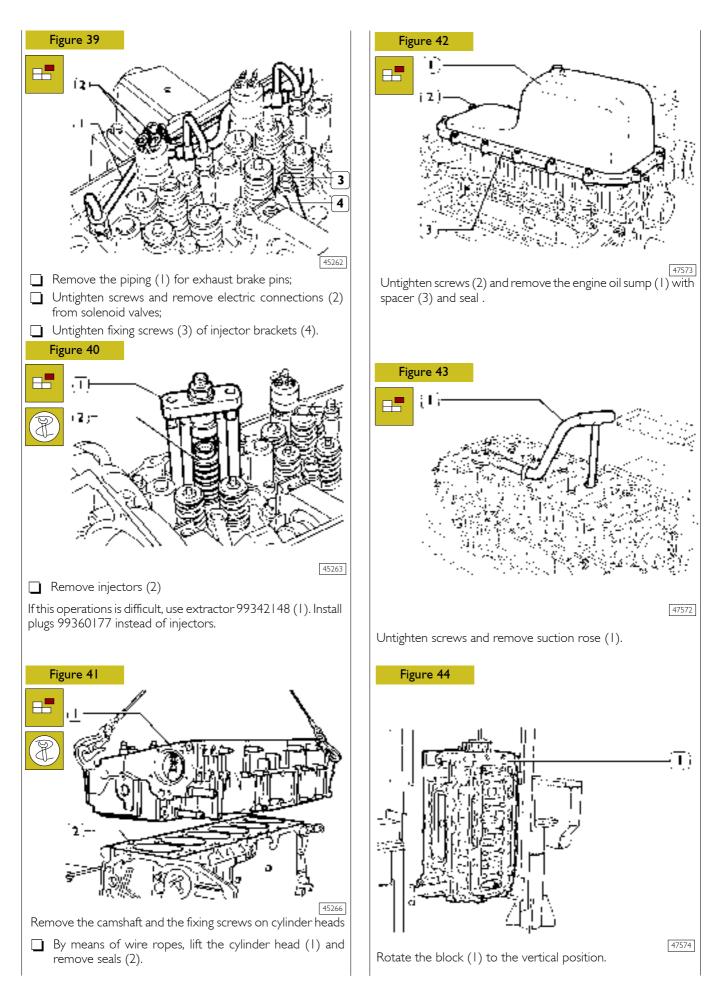


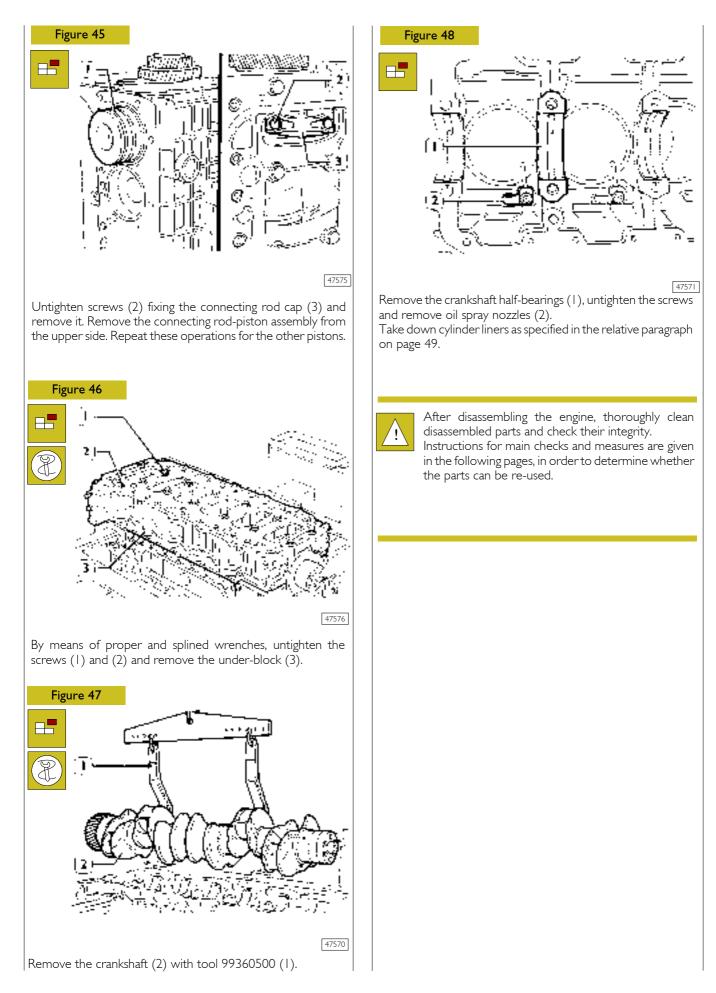

Remove the following components:


- alternator (1);
- belt tightener support (2);
- air conditioner compressor (3);
- flywheell (4);
- water pump and piping (5);
- fan pulley spacer (6);
- thermostat unit (7).

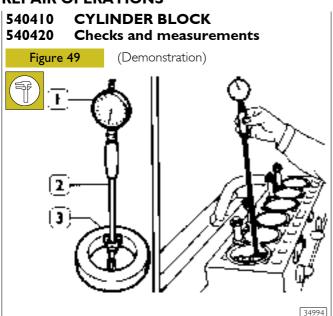




Install extractor 99340051 (2) and remove the seal gaskets (1). Unscrew the screws and remove the cover. Disconnect all electric connections and sensors.





Remove the following components: oil supply lines (1); water cooling supply lines (3); water discharge lines (2); oil return lines (4); turbocharger (5); exhaust manifold (6).

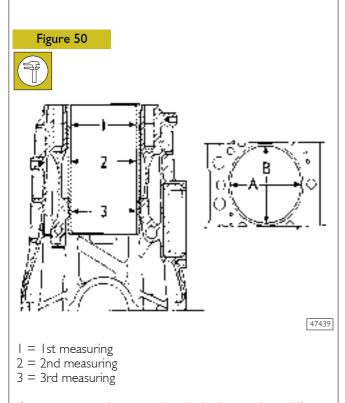




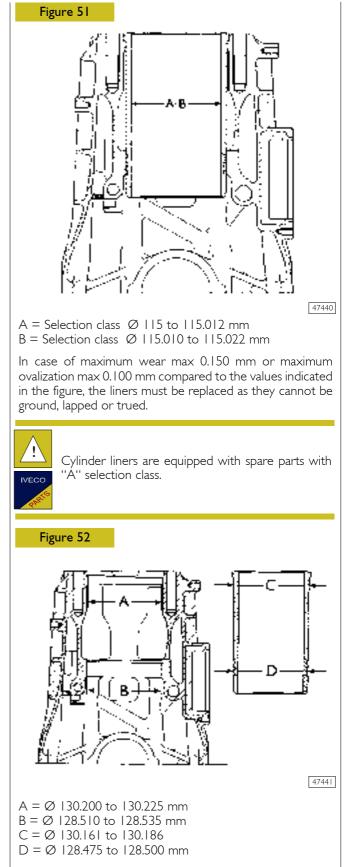






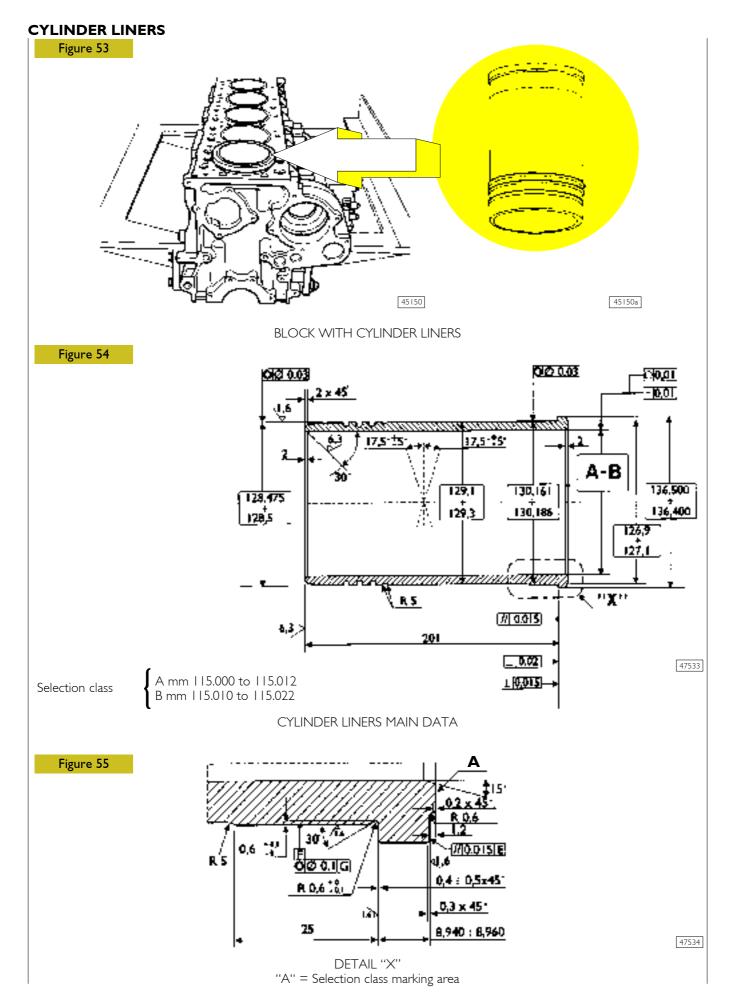


#### **REPAIR OPERATIONS**



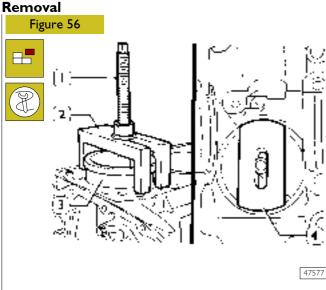

34994

Internal diameter of the cylinder liners is checked for ovalization, taper and wear, using a bore dial (1) centesimal gauge 99395687 (2) previously reset to ring gauge (3), diameter 115 mm.

If a 115 ring gauge is not available use a micrometer caliper.



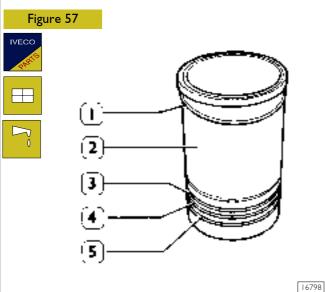

Carry out measurings on each cylinder liner at three different levels and on two (A-B) surfaces, to one another perpendicular, as shown in Figure 50.




The figure shows the outer diameters of the cylinder liners and the relative seat inner diameters.

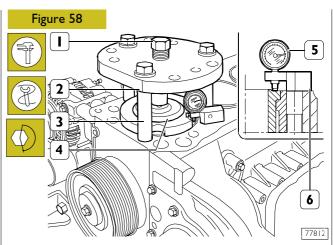
The cylinder liners can be extracted and installed several times in different seats, if necessary.




# 540420 Replacing cylinder liners



Place details 99360706 (I and 2) and plate 99360724 (4) as shown in the figure, by making sure that the plate (4) is properly placed on the cylinder liners.


Tighten the screw nut (1) and remove the cylinder liner (3) from the block.

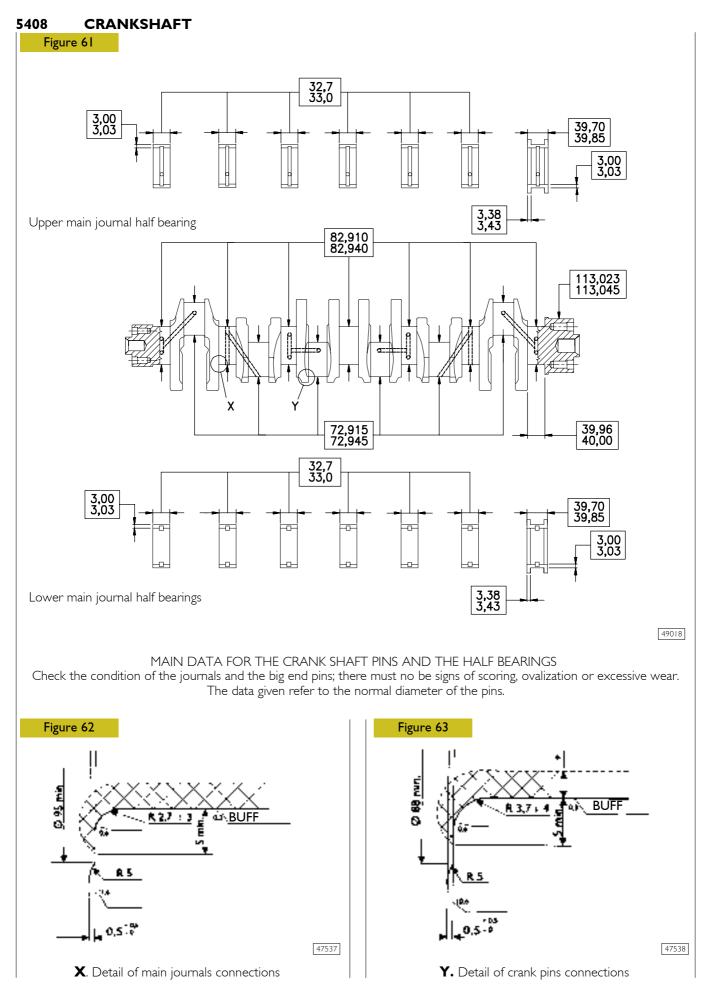
## Fitting and checking protrusion

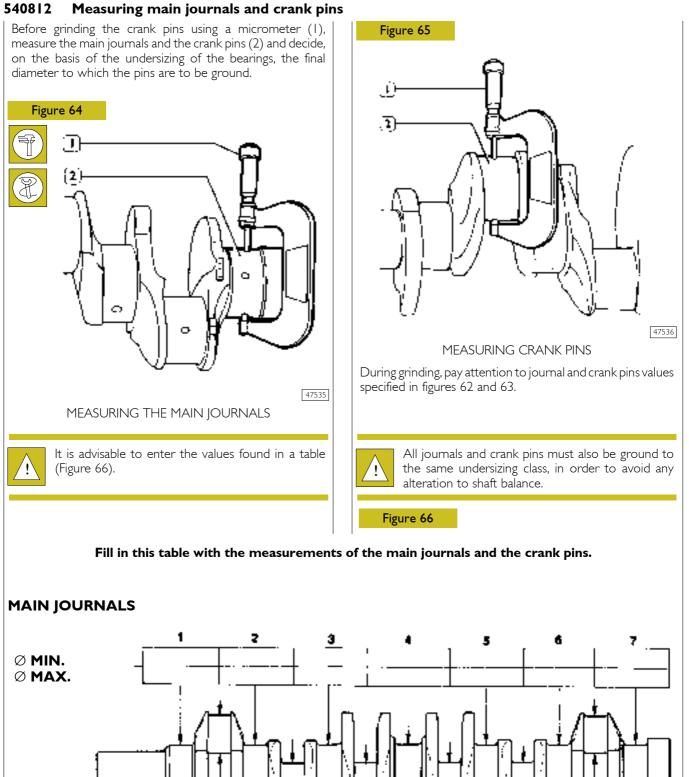


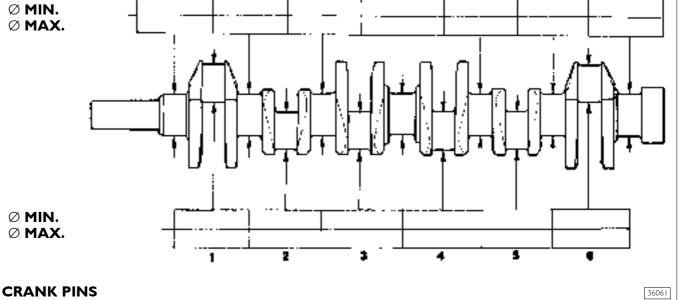
Always replace water sealing rings (3, 4 and 5). Install the adjustment ring (1) on the cylinder liner (2); Iubricate lower part of liner and install it in the cylinder unit using the proper tool.

The adjustment ring (1) is supplied as spare parts in the following thicknesses: 0.08 mm - 0.10 mm - 0.12 mm.




Check cylinder barrel protrusion with tool 99360334 (1-2-3-4) and tighten screw (1) to 170 Nm.


With dial gauge 99395603 (5) placed on base 99370415 (6). Measure the cylinder barrel protrusion compared to the cylinder head supporting plane, it must be 0,035 to 0,065 mm (Figure 59); otherwise replace the adjusting ring (1, Figure 57) fitted with spare parts having different thickness.




When the installation is completed, block the cylinder liners (1) to the block (2) with studs 99360703 (3).

IVECO







### PRELIMINARY MEASUREMENT OF MAIN AND BIG END BEARING SHELL SELECTION DATA

**CRANKPINS:** 

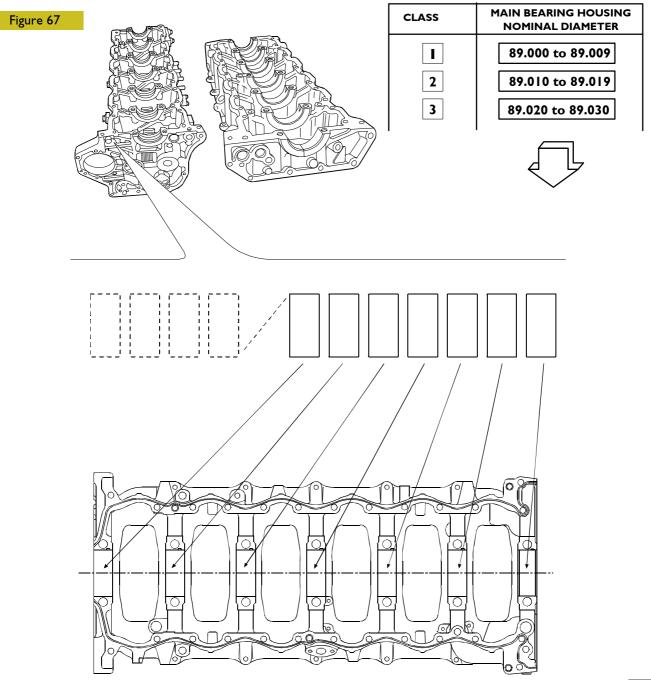
connecting rod.

Determine the class of diameter of the seat in the

Determine the class of diameter of the crankpin.

Select the class of the bearing shells to mount.

For each of the journals of the crankshaft, it is necessary to carry out the following operations:


#### MAIN JOURNALS:

- Determine the class of diameter of the seat in the crankcase.
- Determine the class of diameter of the main journal.
- Select the class of the bearing shells to mount.

#### DEFINING THE CLASS OF DIAMETER OF THE SEATS FOR BEARING SHELLS ON THE CRANKCASE

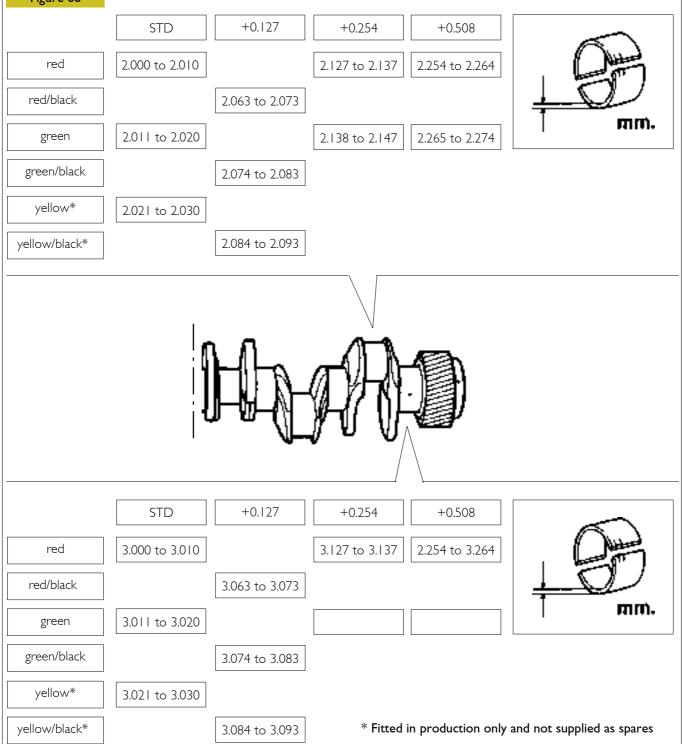
On the front of the crankcase, two sets of numbers are marked in the position shown (Figure 67 at top).

- The first set of digits (four) is the coupling number of the crankcase with its base.
- The following seven digits, taken singly, are the class of diameter of each of the seats referred to (Figure 67 at bottom).
- Each of these digits may be 1, 2 or 3.



Print 603.93.141

#### Selecting the main and big end bearing shells



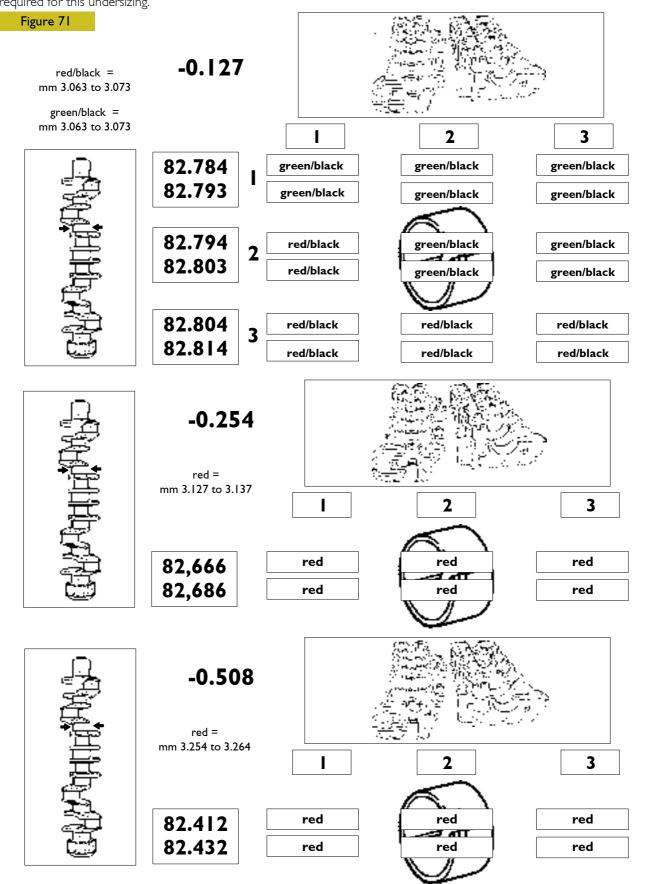

To obtain the required assembly clearances, the main and big end bearing shells need to be selected as described hereunder.

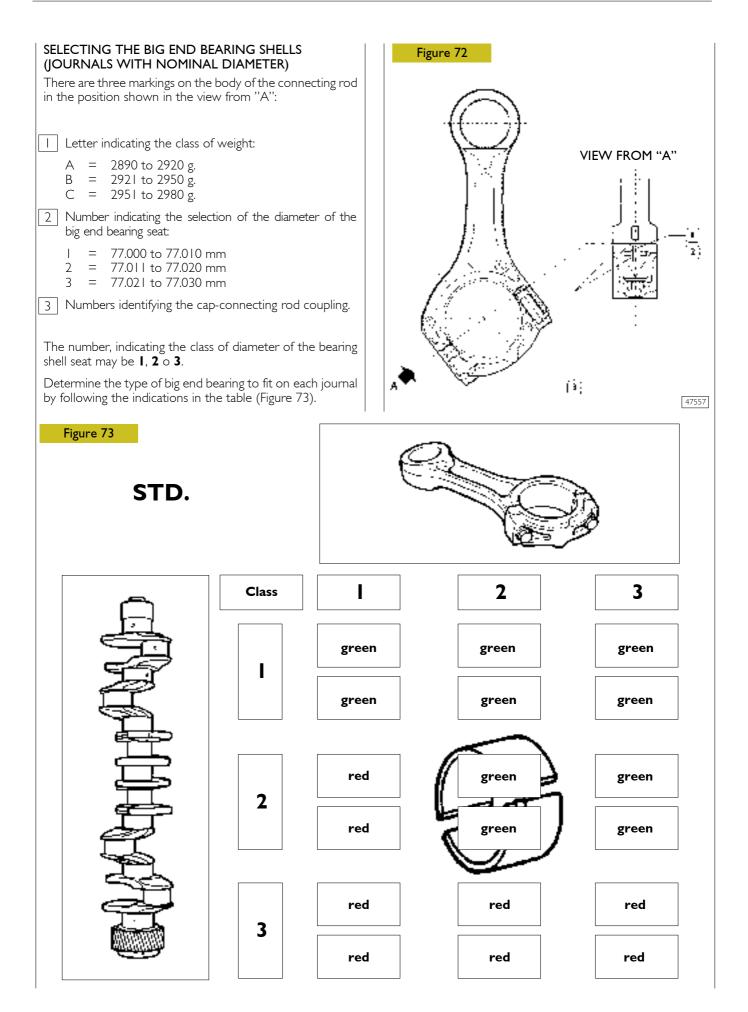
This operation makes it possible to identify the most suitable bearing shells for each of the journals (the bearing shells, if necessary, can have different classes from one journal to another).

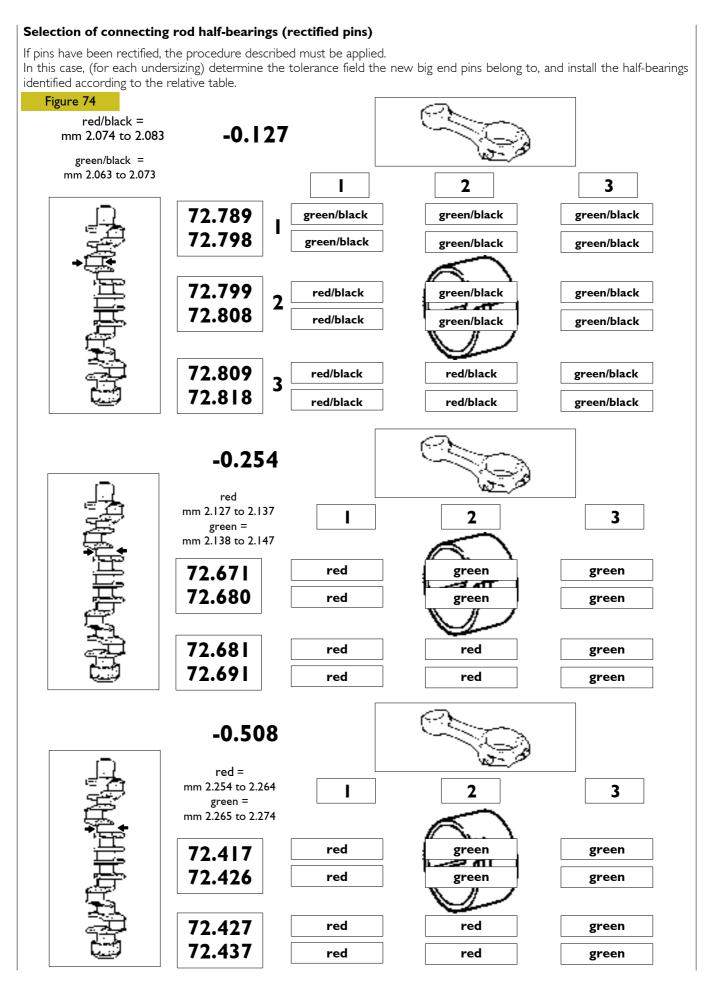
Depending on the thickness, the bearing shells are selected in classes of tolerance marked by a coloured sign (red-green – red/black – green/black). The following tables give the specifications of the main and big end bearing shells available as spares in the standard sizes (STD) and in the permissible oversizes (+0.127, +0.254, +0.508).

Figure 68



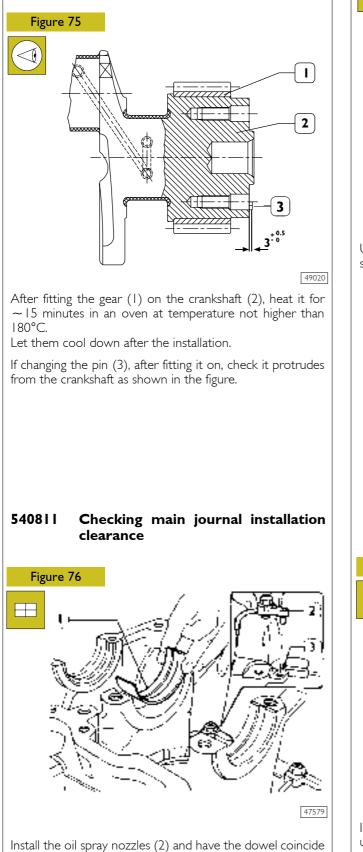

# DEFINING THE CLASS OF DIAMETER OF THE MAIN JOURNALS AND CRANKPINS (Journals with nominal diameter) Main journals and crankpins: determining the class of diameter of the journals. Three sets of numbers are marked on the crankshaft in the position shown by the arrow (Figure 69 at top): The first number, of five digits, is the part number of the shaft. Under this number, on the left, a set of six digits refers to the crankpins and is preceded by a single digit showing the status of the journals (I = STD, 2 = -0.127), the other six digits, taken singly, give the class of diameter of each of the crankpins they refer to (Figure 69 at top). The set of seven digits, on the right, refers to the main journals and is preceded by a single digit: the single digit shows the status of the journals (I = STD, 2 = -0.127), the other seven digits, taken singly, give the class of diameter of each of the main journals they refer to (Figure 69 at bottom). Figure 69 CRANKPIN CLASS NOMINAL DIAMETER L 72.915 to 72.924 2 72.925 to 72.934 3 72.935 to 72.945 MAIN JOURNALS CLASS NOMINAL DIAMETER 82.910 to 82.919 I 2 82.920 to 82.929 3 82.930 to 82.940


# Selection of main half-bearings (nominal diameter pins) After detecting, for each journal, the necessary data on block and crankshaft, select the type of half-bearings to be used, in compliance with the following table: Figure 70 STD. I 2 3 green green green I green green green green green red 2 red green green red red red 3 red red red


#### Selection of main half-bearings (rectified pins)

If the journals have been rectified, the procedure described cannot be applied.

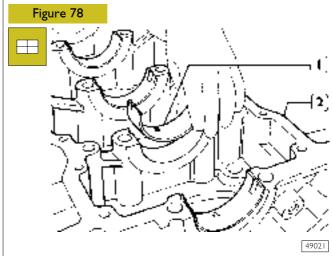
In this case, make sure that the new diameter of the journals is as specified on the table and install the only half-bearing type required for this undersizing.





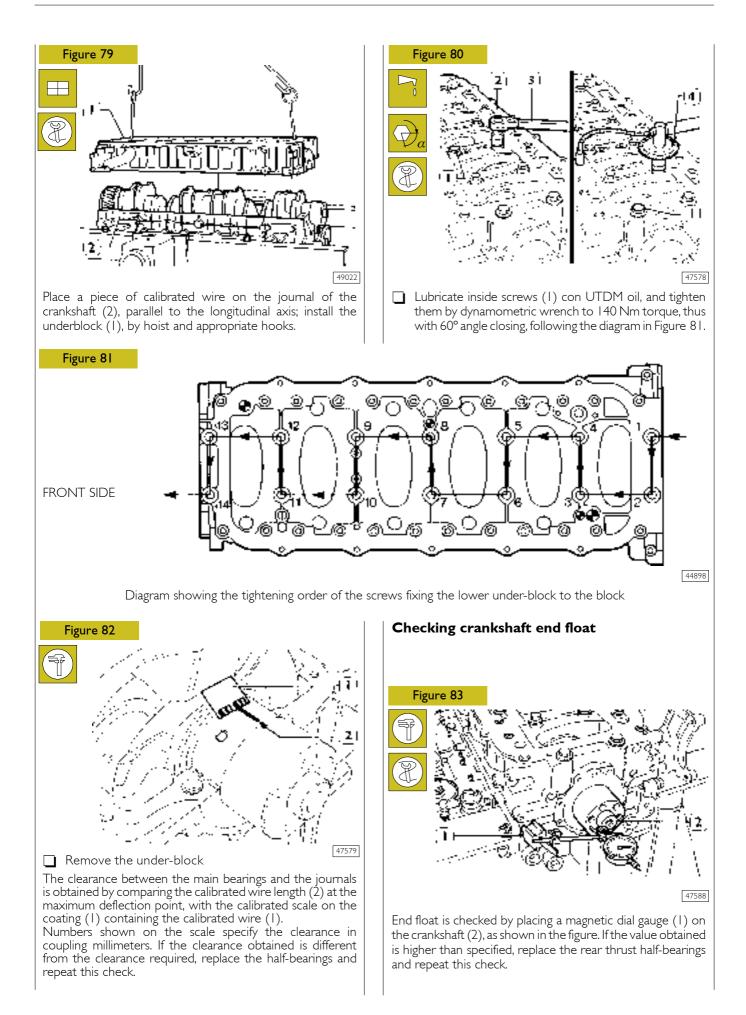



# 540815 Replacing the timing control gear and the oil pump

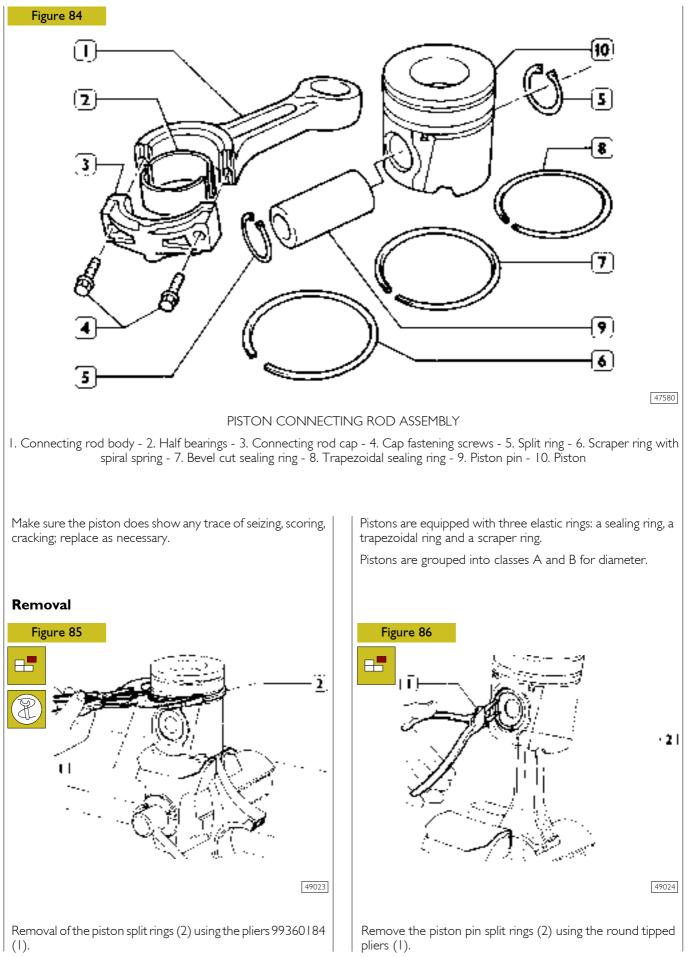

Check that the teeth of the gears are not damaged or worn, otherwise remove them using the appropriate extractor.

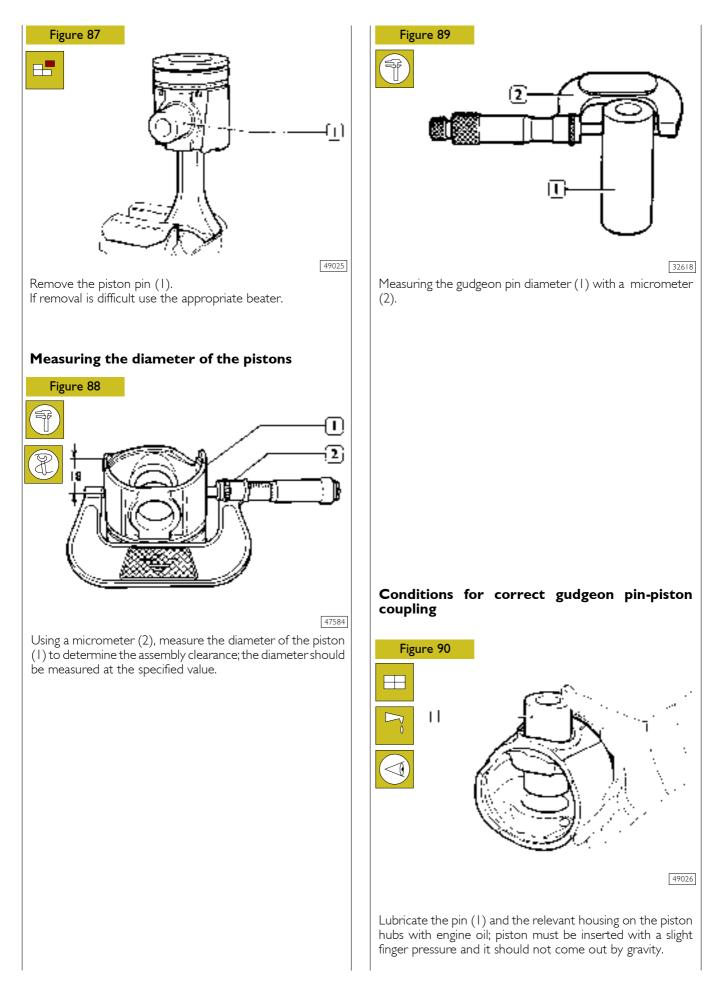


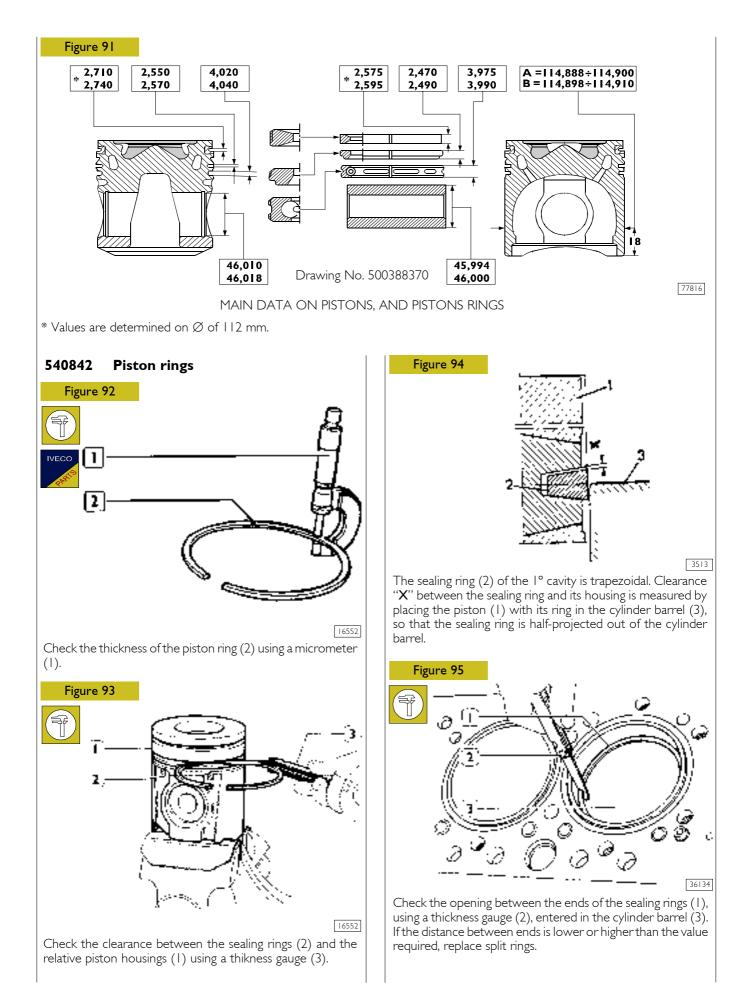
# Figure 77

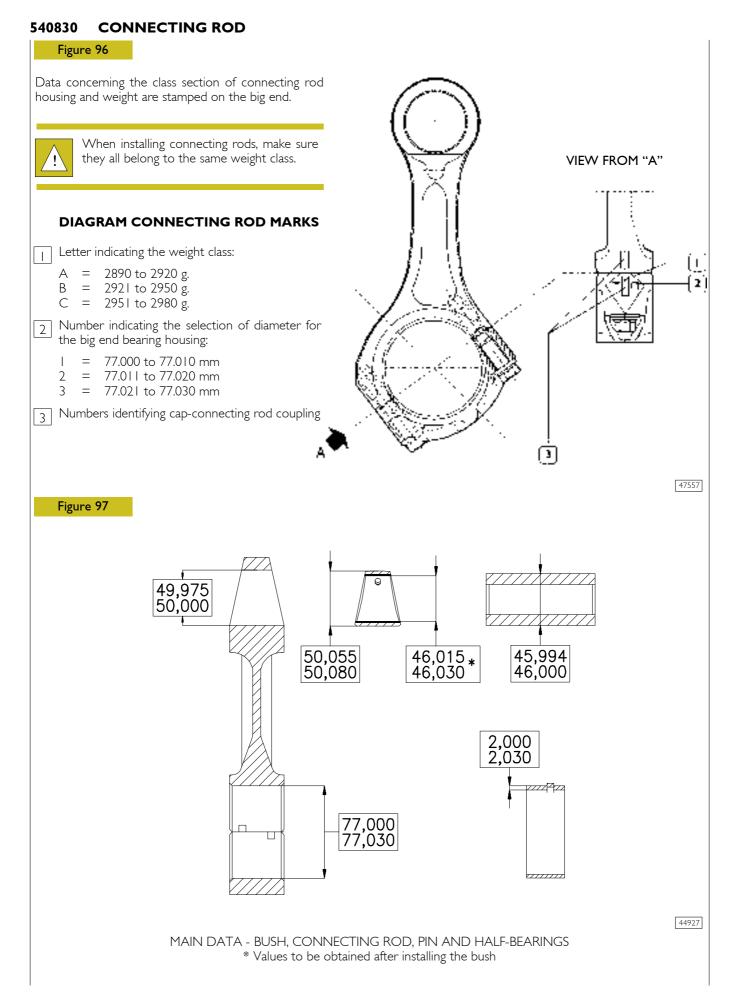

Using the hoist and hook 99360500 (1) mount the driving shaft (2).

Install the oil spray nozzles (2) and have the dowel coincide with the block hole (3). Install the half-bearings (1) on the main bearings.

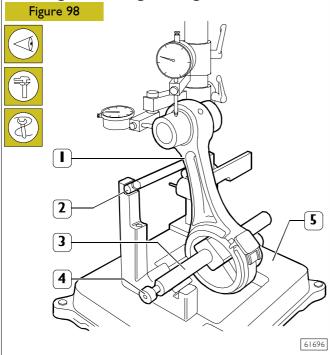




Install the half-bearings (1) on the main bearings in the underblock (2).


Check the installation clearance between the main journals and the relative bearings as follows:





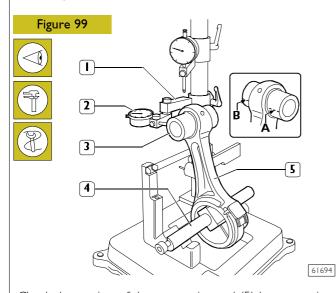









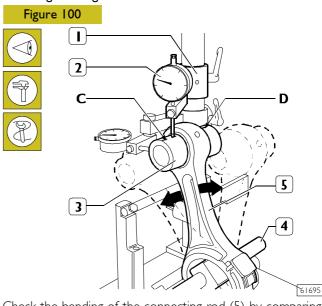



#### Checking axis alignment

Check the alignment of the axes of the connecting rods (1) with device 99395363 (5), proceeding as follows:

- Fit the connecting rod (1) on the spindle of the tool 99395363 (5) and lock it with the screw (4).
- Set the spindle (3) on the V-prisms, resting the connecting rod (1) on the stop bar (2).


#### Checking torsion



Check the torsion of the connecting rod (5) by comparing two points (**A** and **B**) of the pin (3) on the horizontal plane of the axis of the connecting rod.

Position the mount (1) of the dial gauge (2) so that this pre-loads by approx. 0.5 mm on the pin (3) at point **A** and zero the dial gauge (2). Shift the spindle (4) with the connecting rod (5) and compare any deviation on the opposite side **B** of the pin (3): the difference between **A** and **B** must be no greater than 0.08 mm.

Checking bending

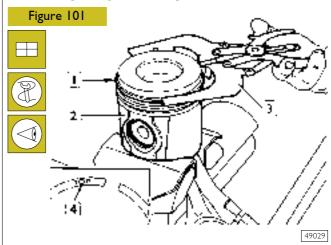


Check the bending of the connecting rod (5) by comparing two points C and D of the pin (3) on the vertical plane of the axis of the connecting rod.

Position the vertical mount (1) of the dial gauge (2) so that this rests on the pin (3) at point C.

Swing the connecting rod backwards and forwards seeking the highest position of the pin and in this condition zero the dial gauge (2).

Shift the spindle (4) with the connecting rod (5) and repeat the check on the highest point on the opposite side **D** of the pin (3). The difference between point **C** and point **D** must be no greater than 0.08 mm.

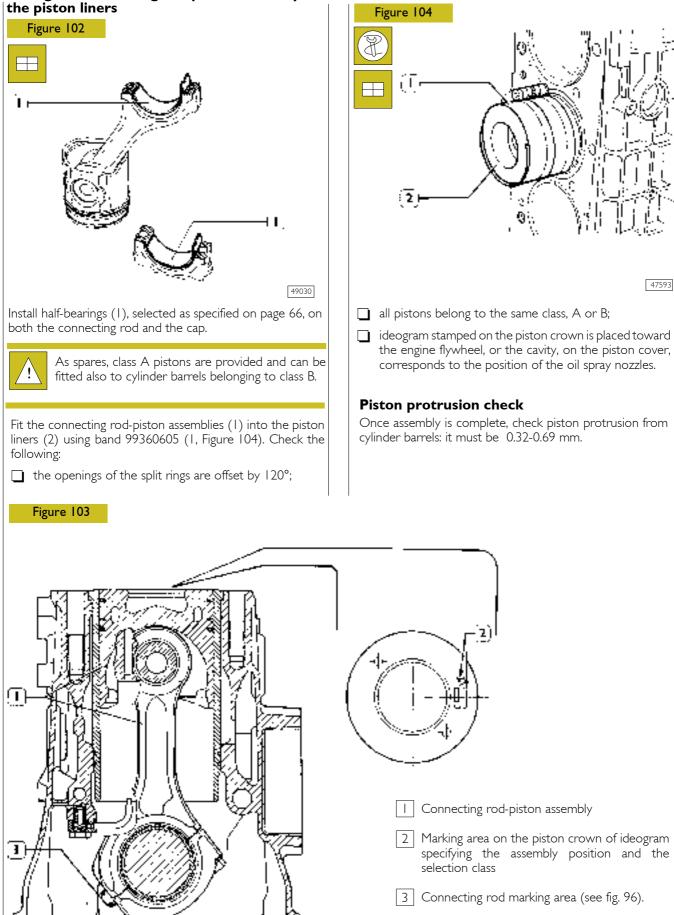

#### Mounting the connecting rod - piston assembly

Carry out the steps for removal described on page 61 in reverse order.



The connecting rod screws can be reused as long as the diameter of the thread is not less than 13.4 mm.

#### Mounting the piston rings

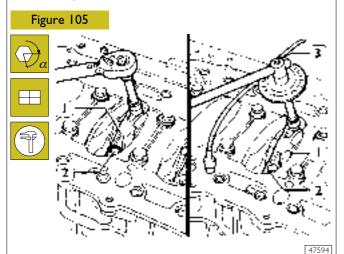



To fit the piston rings (1) on the piston (2) use the pliers 99360184 (3).

The rings need to be mounted with the word "TOP" (4) facing upwards. Direct the ring openings so they are staggered  $120^{\circ}$  apart.

47593

# Fitting the connecting rod-piston assembly into



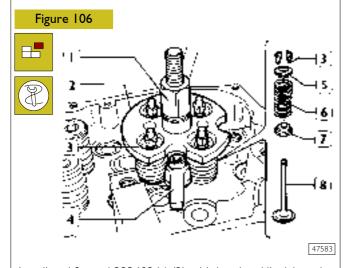

61831

#### 540831 Checking assembly clearance of big end pins

To check the clearance proceed as follows:

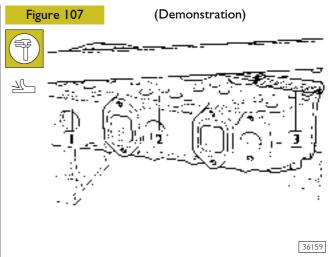
Connect the connecting rods to the relative main journals, place a length of calibrated wire on the latter.




Install the connecting rod caps (1) with half-bearings; tighten the connecting rod cap fixing screws (2) to 50 Nm (5 kgm) torque. By tool 99395216 (3), tighten the screws further at  $40^{\circ}$  angle.

Remove the caps and check the clearance by comparing the width of the calibrated wire with the scale calibration on the envelope containing the wire.

## 540610 CYLINDER HEAD


Before taking down the cylinder head, check the seal using the appropriate tool; in case of leakage replace the cylinder head.

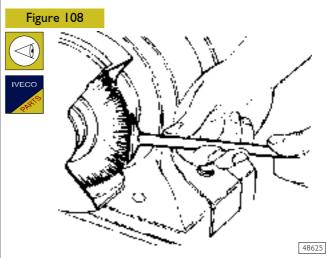
# Valve removal



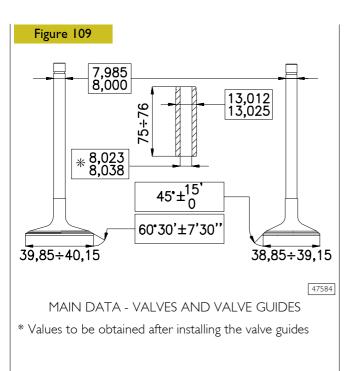
Install and fix tool 99360264 (2) with bracket (4); tighten by lever (1) until cotters are removed (3); remove the tool (2) and the upper plate (5), the spring (6) and the lower plate (7). Repeat the operation on all the valves. Turn the cylinder head upside down and remove the valves (8).

# Checking the planarity of the head on the cylinder block



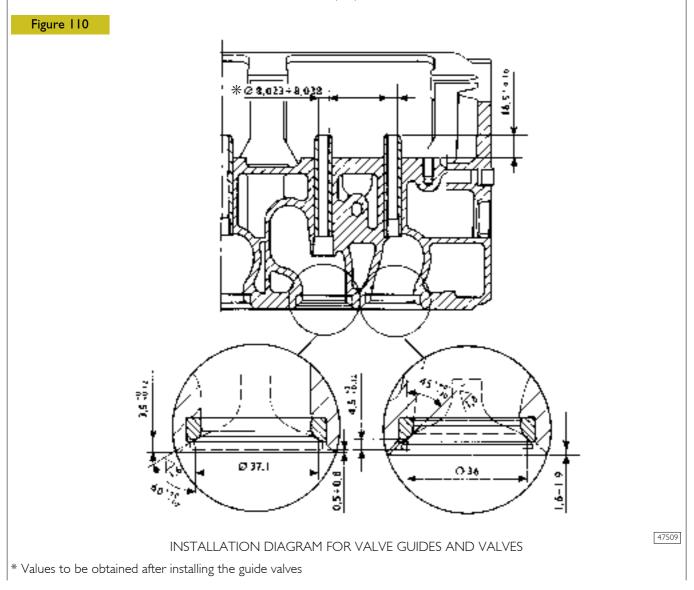

The planarity (1) is checked using a ruler (2) and a thikness gauge (3). If deformations exist, surface the head using proper surface grinder; the maximum amount of material to be removed is 0.2 mm.

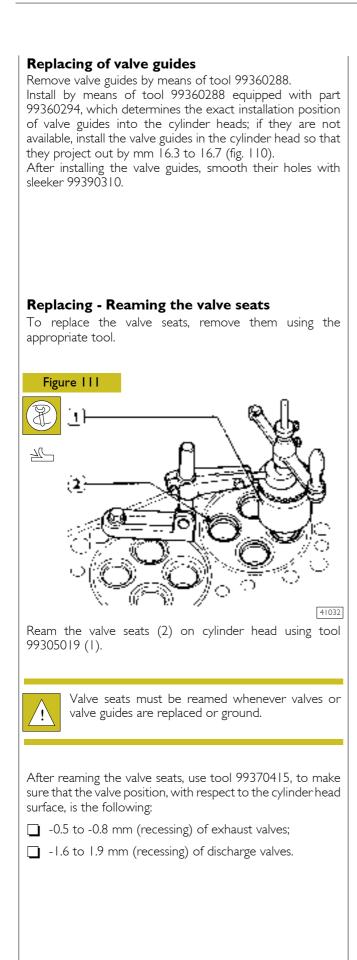



After leveling, make sure that valve sinking and injector protrusion are as described in the relative paragraph.

### 540622 VALVE

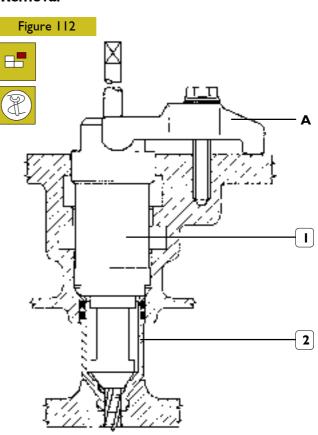
### Removing deposits and checking the valves





Remove carbon deposits using the metal brush supplied. Check that the valves show no signs of seizure or cracking. Check the diameter of the valve stem using a micrometer (see fig. 109) and replace if necessary.



# 540667 VALVE GUIDES

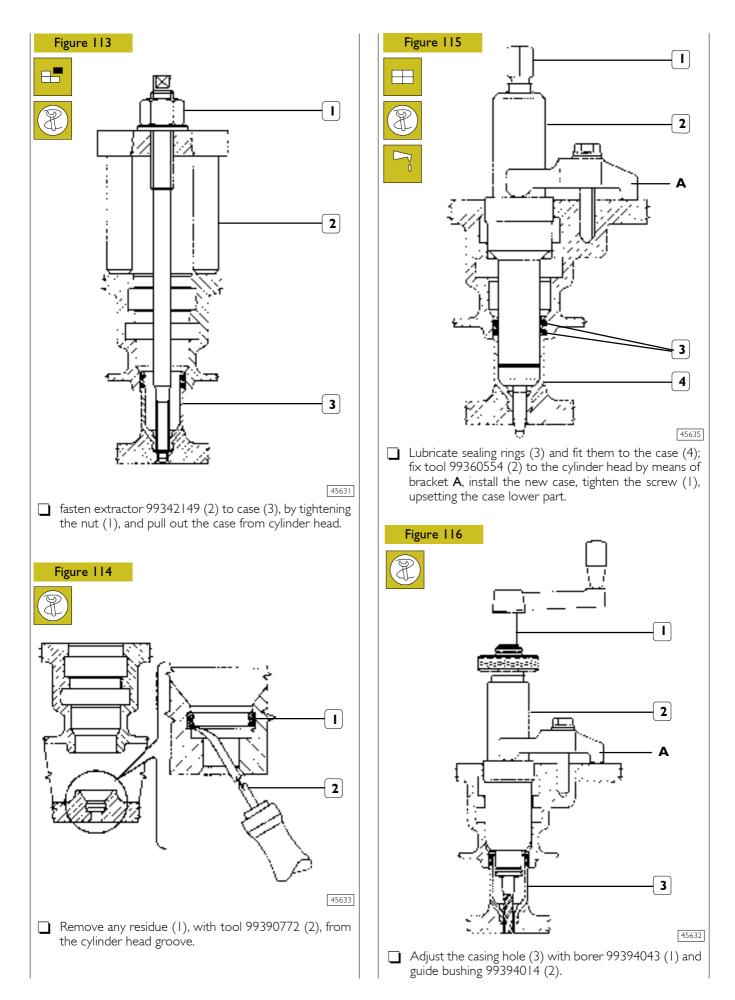

Check, by means of a micrometer, that valve stem diameters are as specified; if necessary, grind the valves seat with a grinder, removing the minimum quantity of material.

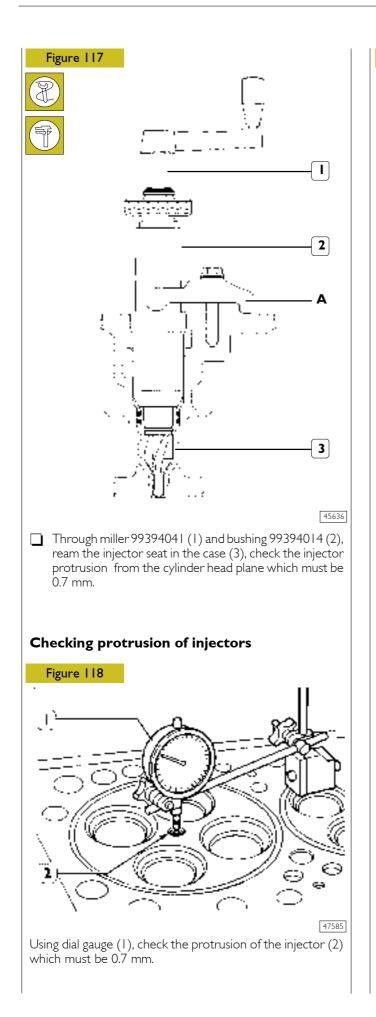




#### 540613 REPLACING INJECTOR HOLDER CASES

Removal





45634

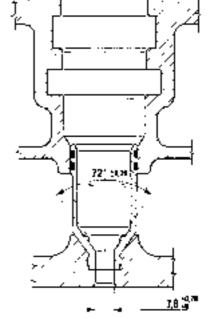
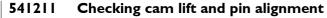
To replace the injector case (2), act as follows:

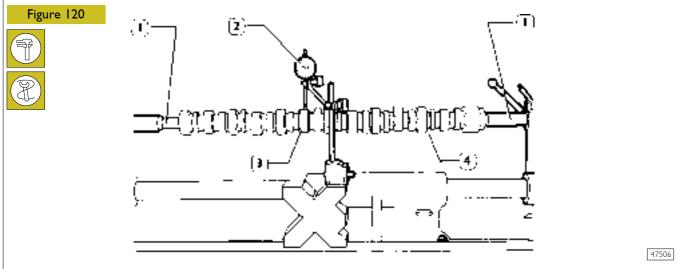
 $\Box$  thread the case (2) with tool 99390804 (1).

Carry out operations described in figs. 112-115-116-117 by fixing tools to the cylinder head by means of braket A.

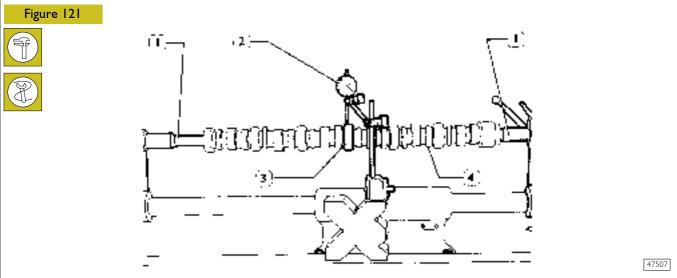




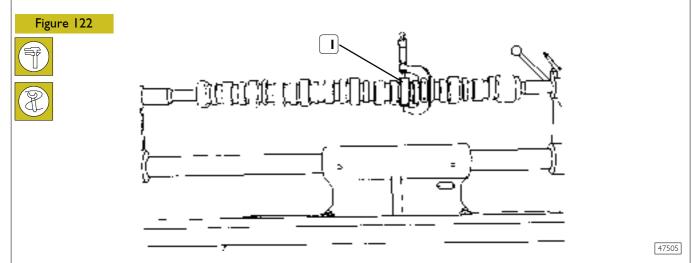





Figure 119

44909

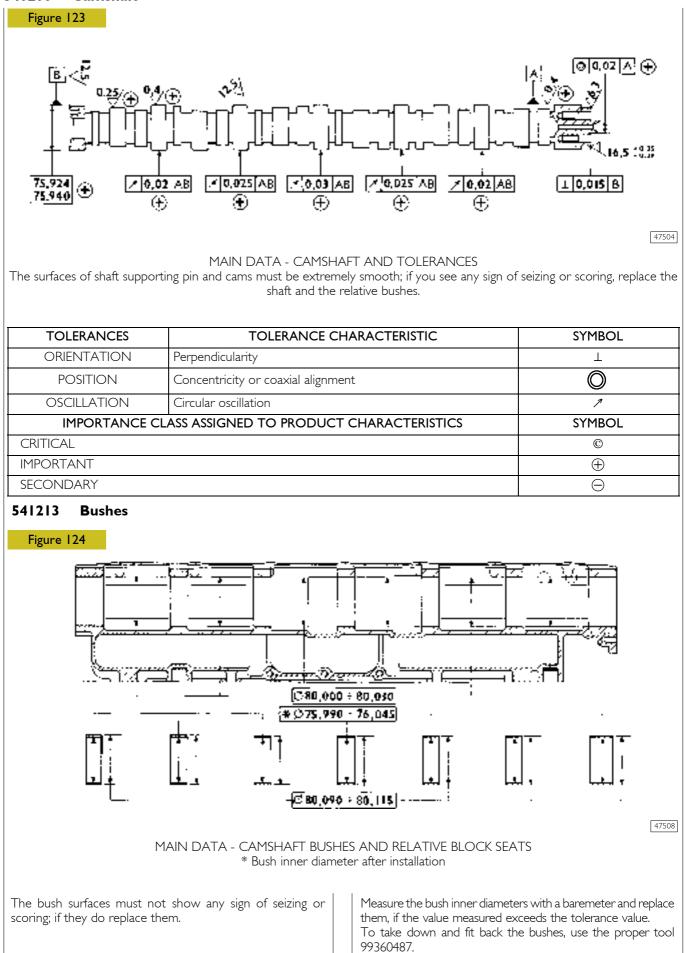

#### INSTALLATION DIAGRAM FOR INJECTOR CASE

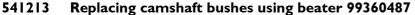
## 5412 TIMING GEAR

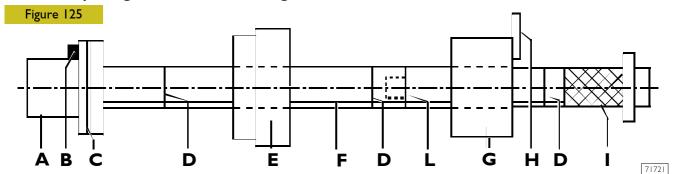





Place the camshaft (4) on the tailstock (1) and check cam lift (3) using a centesimal gauge (2); values are shown in table on page 20.

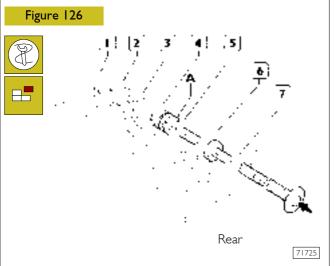




When the camshaft (4) is on the tailstock (1), check alignment of supporting pin (3) using a centesimal gauge (2); it must not exceed 0.030 mm. If misalignment exceeds this value, replace the shaft.



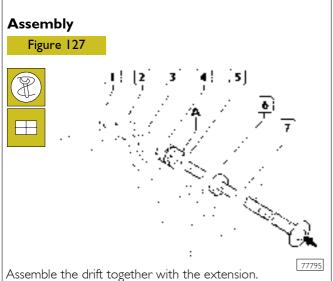

In order to check installation clearance, measure bush inner diameter and camshaft pin (1) diameter; the real clearance is obtained by their difference.

If clearance exceeds 0.150 mm, replace bushes and, if necessary, the camshaft.





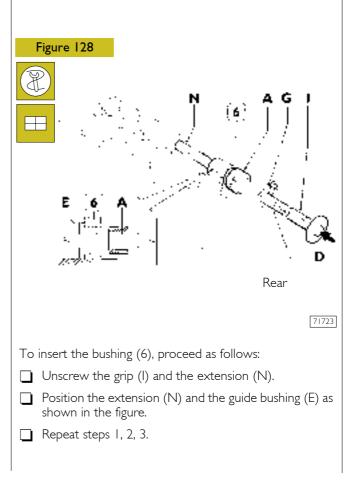


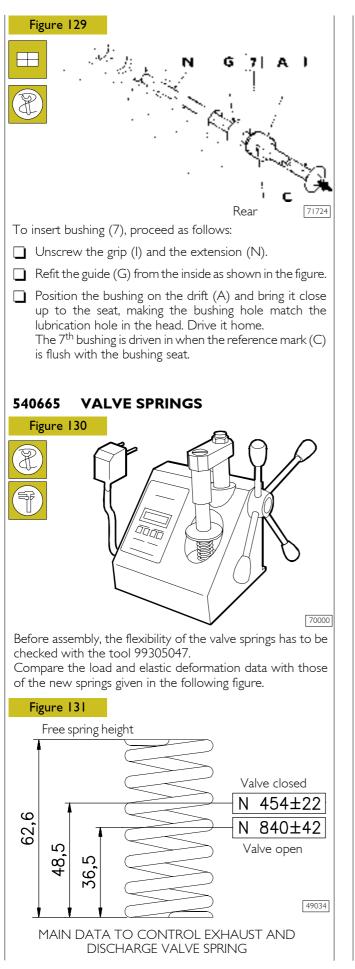


A. Drift with seat for bushings to insert/extract. - B. Grub screw for positioning bushings. - C. Reference mark to insert seventh bushing correctly. - D. Reference mark to insert bushings I, 2, 3, 4, 5, 6 correctly (red marks). - E. Guide bushing. - F. Guide line. - G. Guide bushing to secure to the seventh bushing mount. - H. Plate fixing yellow bushing to cylinder head. - I. Grip. - L. Extension coupling.

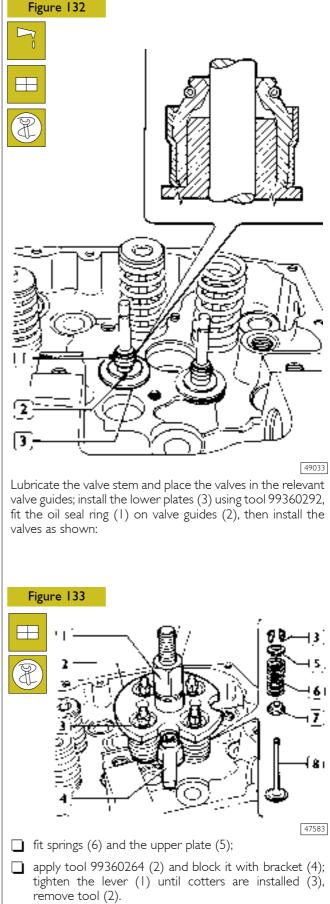
#### Removal



The sequence for removing the bushings is 7, 6, 5, 4, 3, 2, 1. The bushings are extracted from the front of the single seats. Removal does not require the drift extension for bushings 5, 6 and 7 and it is not necessary to use the guide bushing. For bushings 1, 2, 3 and 4 it is necessary to use the extension and the guide bushings.

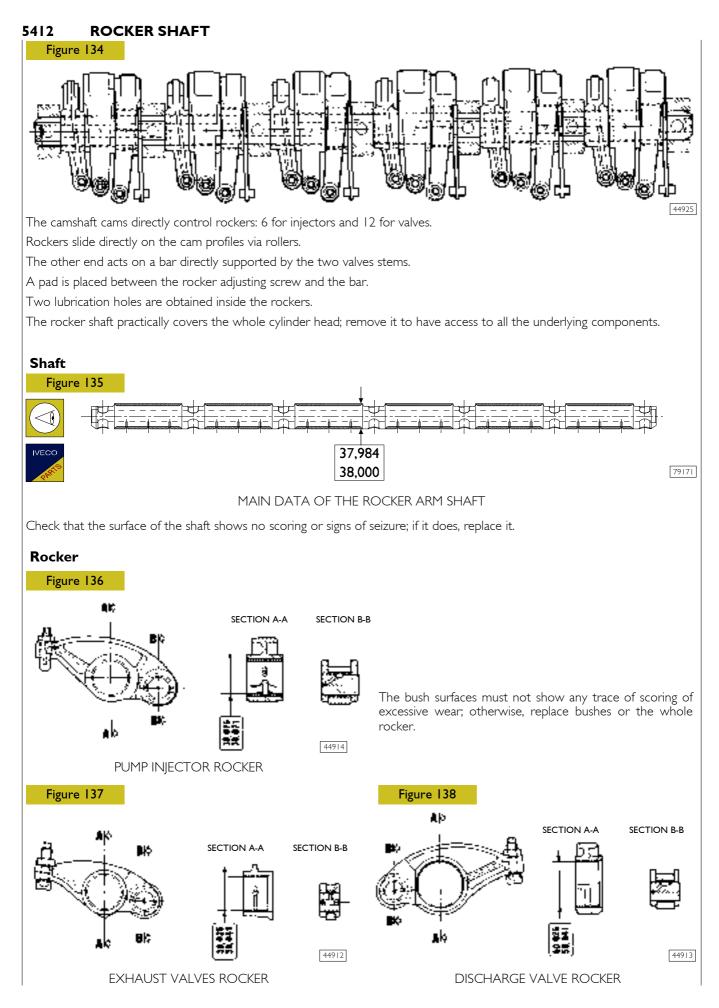

Position the drift accurately during the phase of removal.



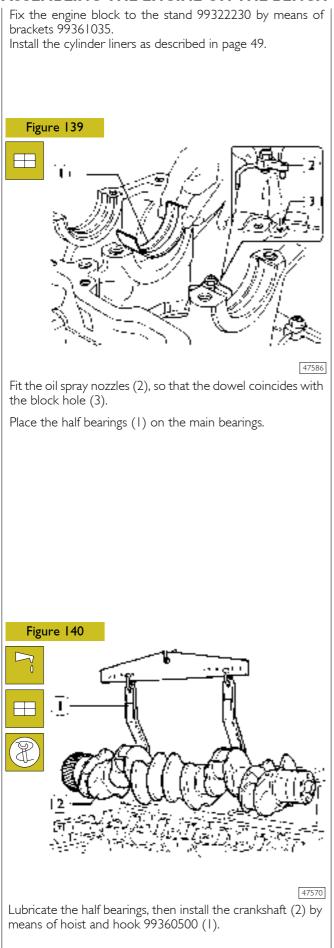


To insert bushings 1, 2, 3, 4 and 5, proceed as follows:

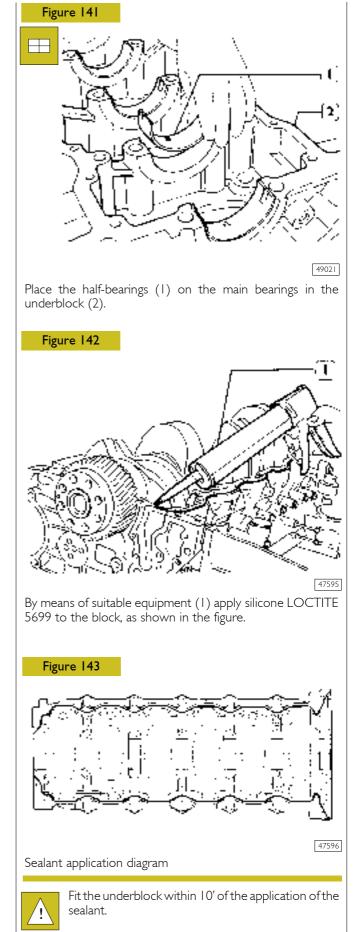
- Position the bushing to insert on the drift (A) making the grub screw on it coincide with the seat (B) (Figure 125) on the bushing.
- 2 Position the guide bushing (E) and secure the guide bushing (G) (Figure 125) on the seat of the 7<sup>th</sup> bushing with the plate (H).
- 3 While driving in the bushing, make the reference mark (F) match the mark (M). In this way, when it is driven home, the lubrication hole on the bushing will coincide with the oil pipe in its seat.

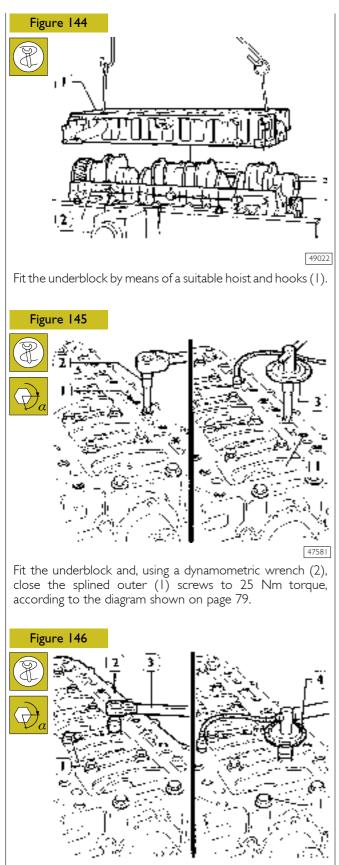
The bushing is driven home when the 1<sup>st</sup> red reference mark (D) is flush with the guide bushing (G).







Fitting the valves and oil seal ring

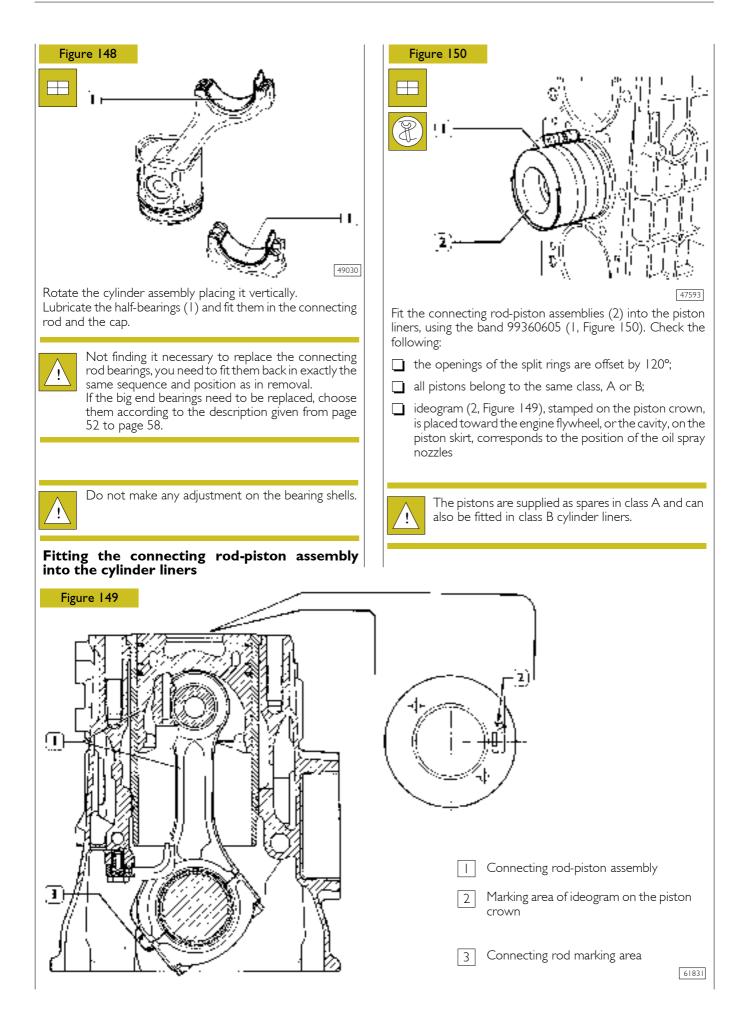

#### Print 603.93.141

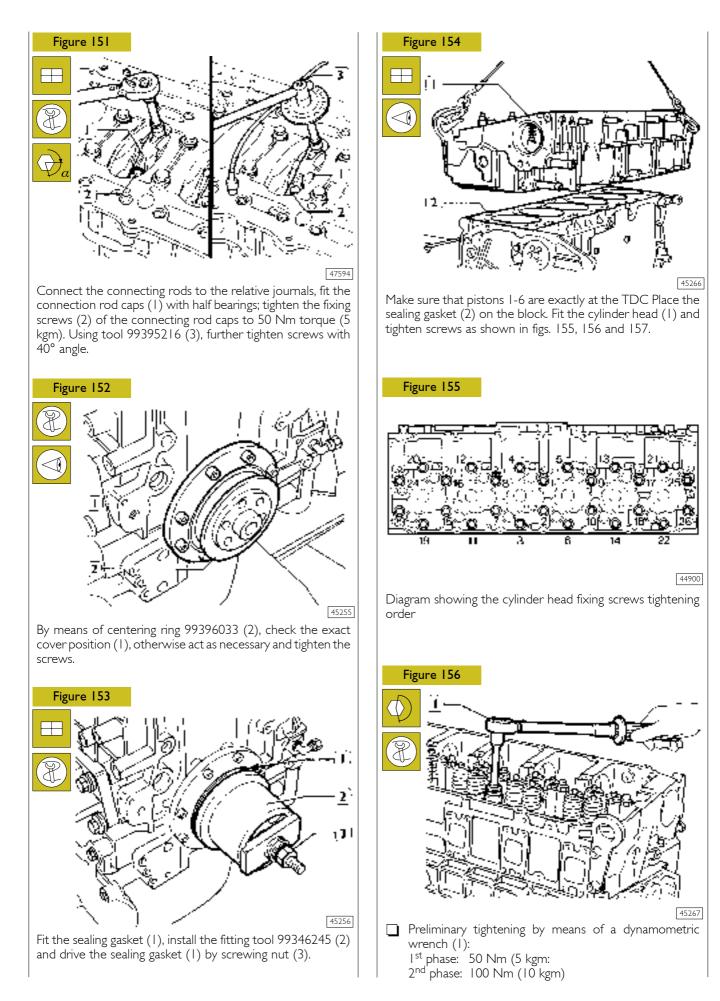


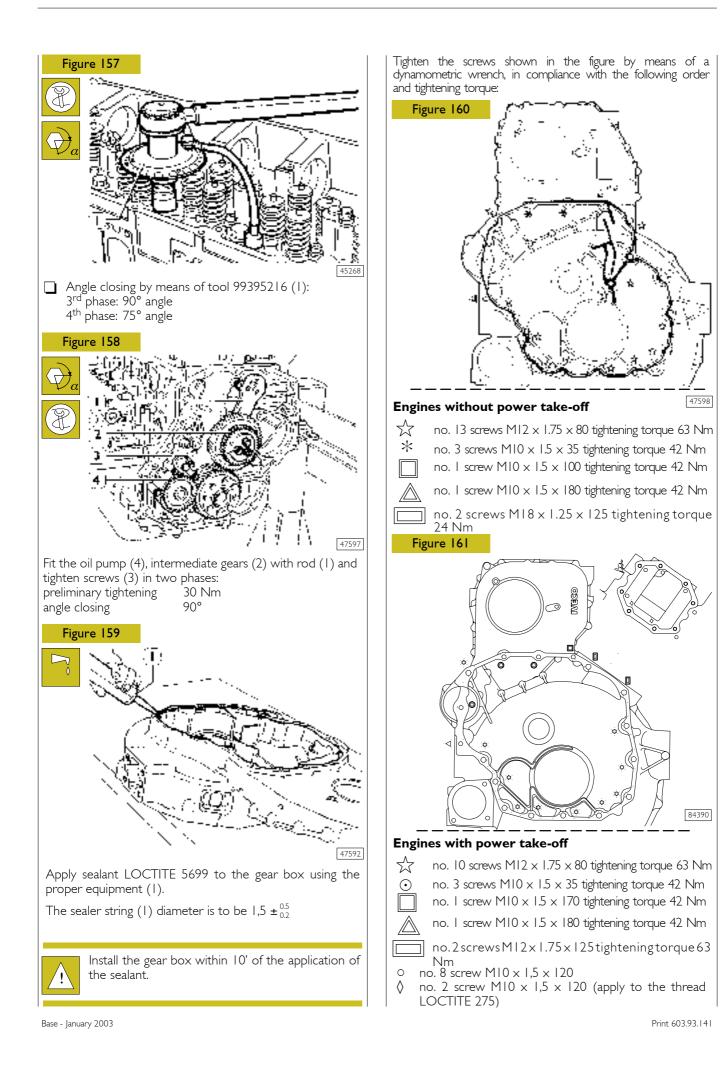
# ASSEMBLING THE ENGINE ON THE BENCH

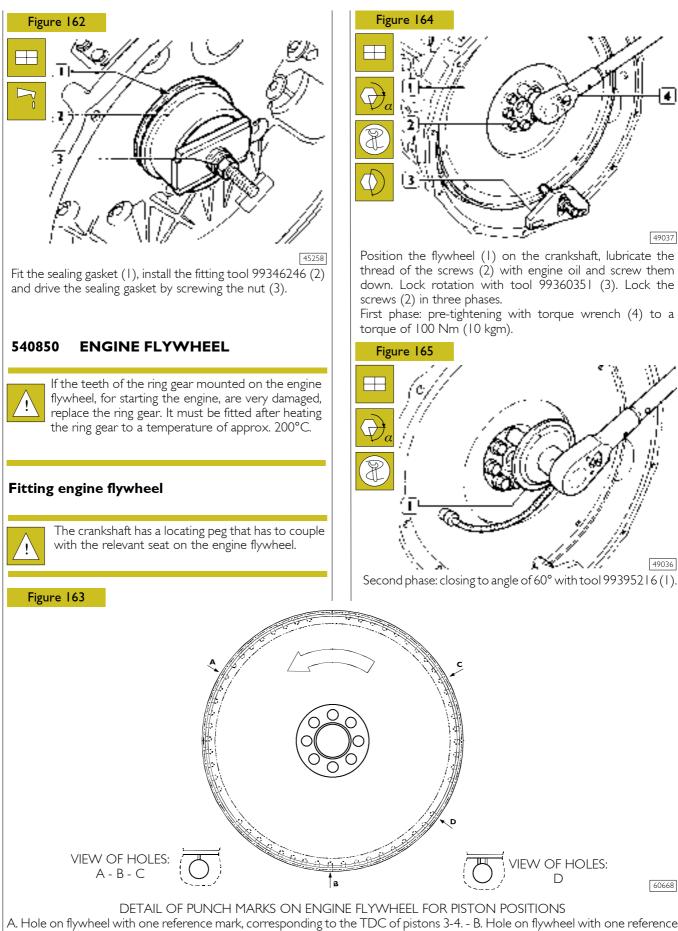




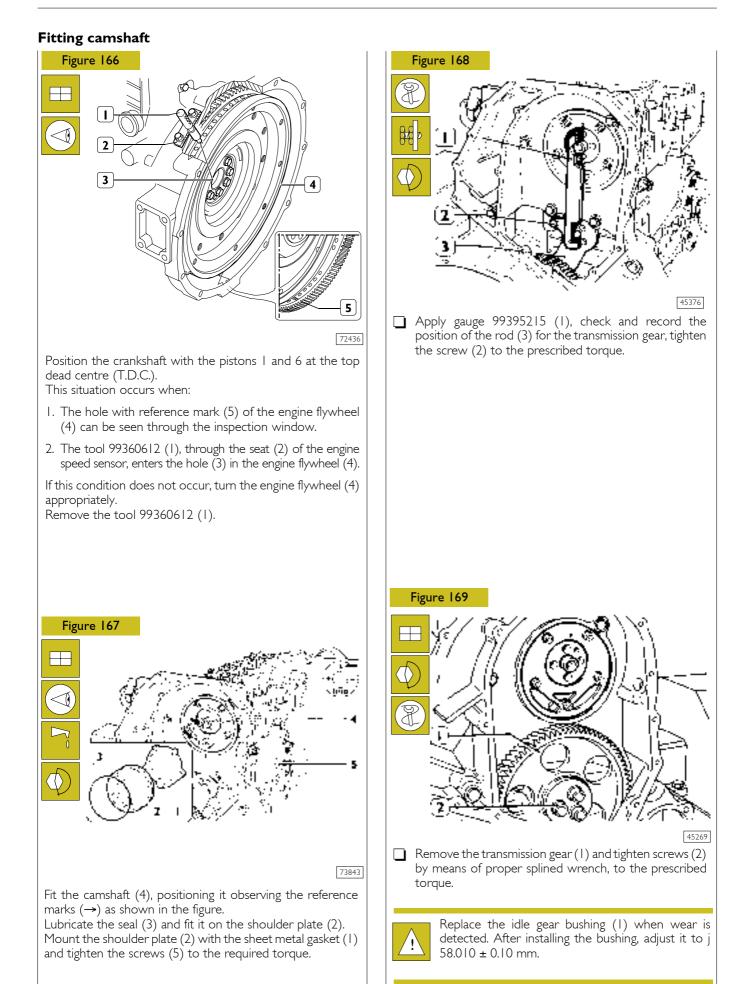


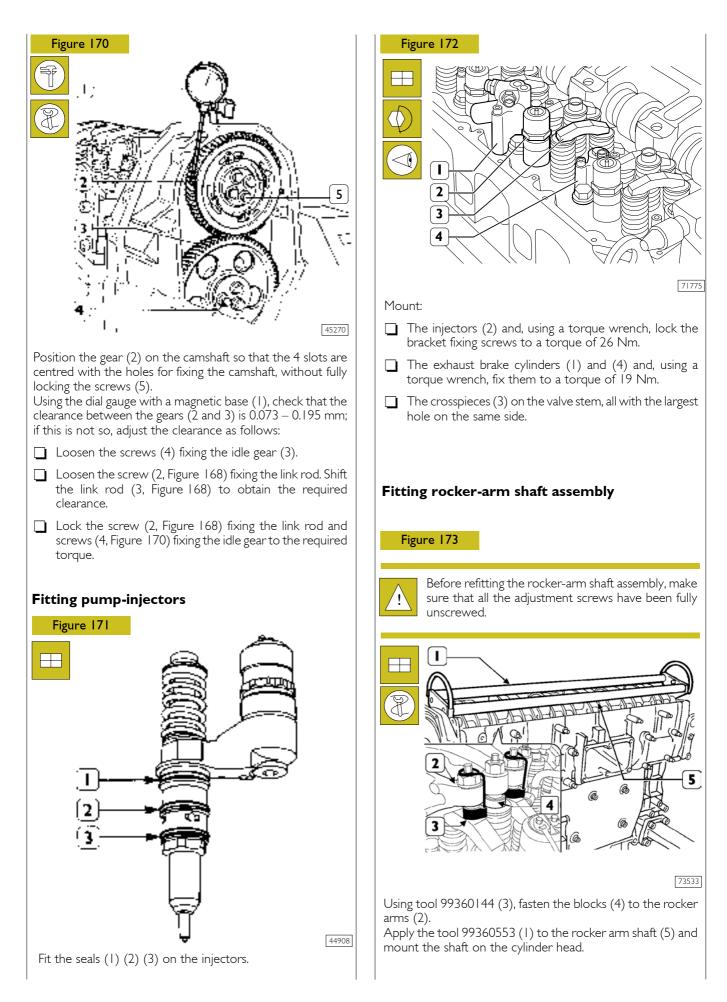


47579

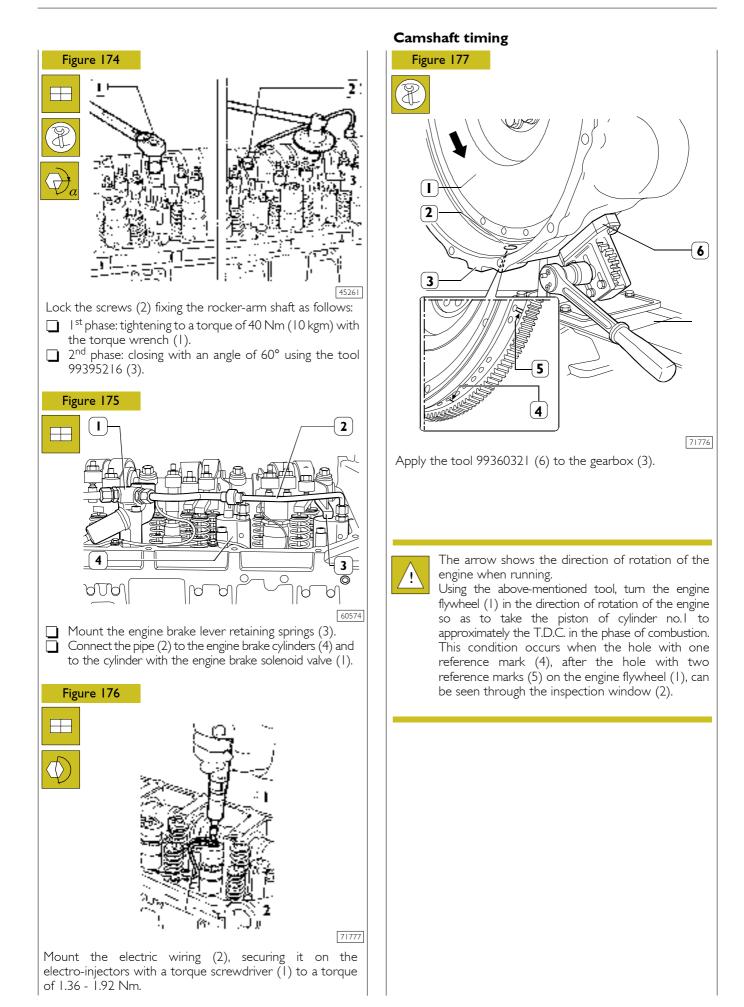

Close the inner screws (1) to 140 Nm torque by means of a dynamometric wrench (3), then with two further angular phases  $60^{\circ} + 60^{\circ}$ , using tool 99395216 (4). Tighten again the outer screws (1, Figure 145) with 90° angular closing, using tool 99395215 (3, Figure 145).

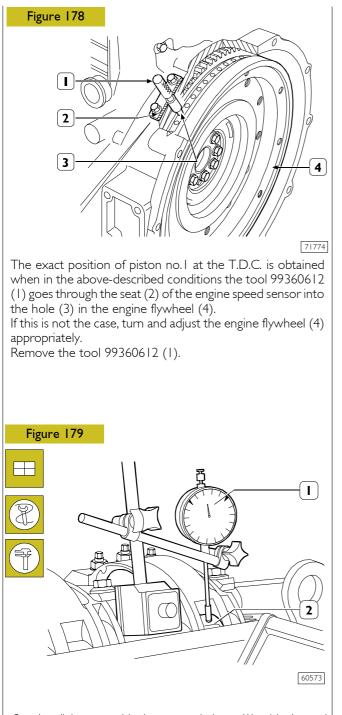

#### Figure 147 First phase: outer FRONT SIDE screws preliminary tightening (25 Nm) 44897 削 Ú¢ 'att à ŵ $\otimes$ ω £Ο 13 12 Second phase: FRONT SIDE inner screws preliminary tightening ತುಲಹ (140 Nm) ୍ର୍ବ R $\overline{\langle x \rangle}$ iΟ 65 44898 ω <u>(</u> à 0 ŵ Third phase: inner screws FRONT SIDE angle closing (60°) මු () ୍କୃତ Ħ R ið 44898 ١Ì ω 69 É. Fourth phase: FRONT SIDE inner screws angle closing (60°) <u>ා</u>රල <u>80</u>8 രിപ് ത 86 ic? 44898 Fifth phase: FRONT SIDE outer screws angle closing (90°) 44899

# DIAGRAM SHOWING THE UNDERBLOCK FIXING SCREWS TIGHTENING ORDER



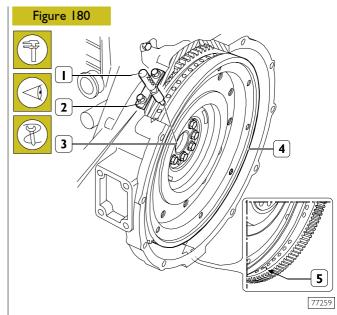




A. Hole on flywheel with one reference mark, corresponding to the TDC of pistons 3-4. - B. Hole on flywheel with one reference mark, corresponding to the TDC of pistons 1-6. - C. Hole on flywheel with one reference mark, corresponding to the TDC of pistons 2-5. - D. Hole on flywheel with two reference marks, position corresponding to 54°.



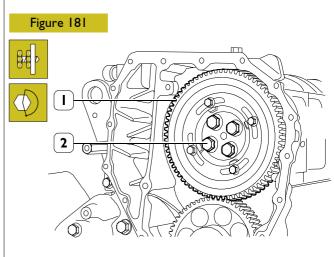







Set the dial gauge with the magnetic base (1) with the rod on the roller (2) of the rocker arm that governs the injector of cylinder no.1 and pre-load it by 6 mm.

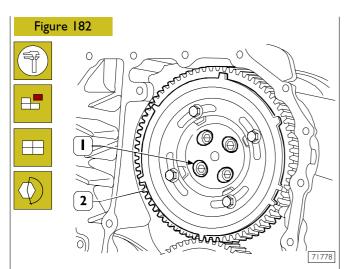
With tool 99360321 (6, Figure 177), turn the crankshaft clockwise until the pointer of the dial gauge reaches the minimum value beyond which it can no longer fall.


Reset the dial gauge.

Turn the engine flywheel anticlockwise until the dial gauge gives a reading for the lift of the cam of the camshaft of 4.90  $\pm$  0.05 mm.

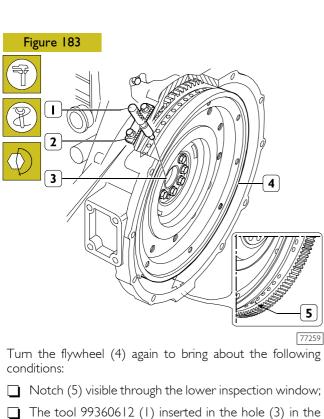


The camshaft is in step if at the cam lift values of  $4.90\pm0.05$  mm there are the following conditions:


- 1) The hole marked with a notch (5) can be seen through the inspection window
- 2) The tool 99360612 (1) through the seat (2) of the engine speed sensor goes into the hole (3) in the engine flywheel (4).



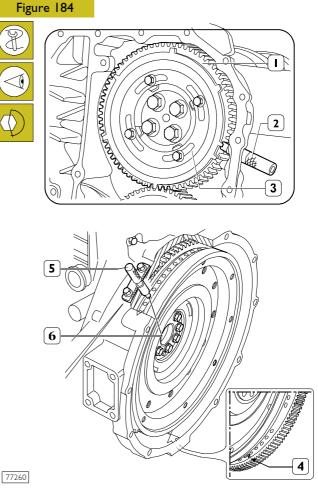
60575


If you do not obtain the conditions illustrated in Figure 180 and described in points 1 and 2, proceed as follows:

- Loosen the screws (2) securing the gear (1) to the camshaft and utilize the slots (1, Figure 182) on the gear (2, Figure 182).
- Turn the engine flywheel appropriately so as to bring about the conditions described in points I and 2 Figure 180, it being understood that the cam lift must not change at all.
- 3) Lock the screws (2) and repeat the check as described above.
- 4) Tighten the screws (2) to the required torque.



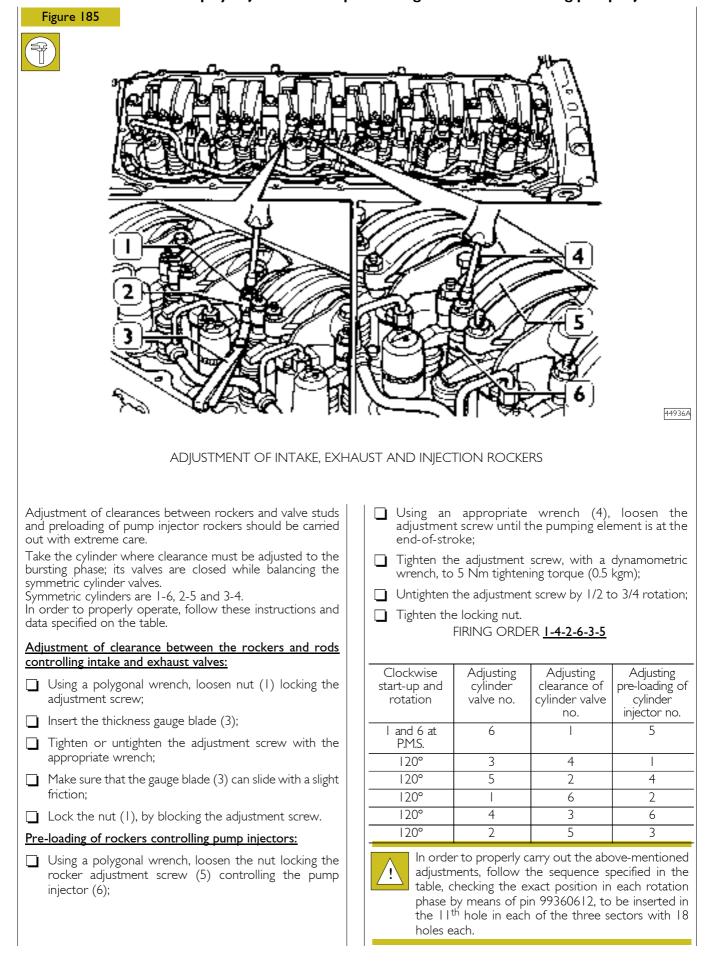
When it is not possible to adjust advance through the slots (1) and the camshaft turns because integral with the gear (2); thus the cam lift reference value varies and it is necessary to proceed in the following way:


- Fasten the screws (2, Figure 181) and rotate the engine flywheel clockwise by ~1/2 turn;
- 2) Turn the engine flywheel anticlockwise until the dial gauge gives a reading of the lift of the cam of the camshaft of  $4.90 \pm 0.05$  mm
- Take out the screws (2, Figure 181) and remove the gear
   (2) from the camshaft.

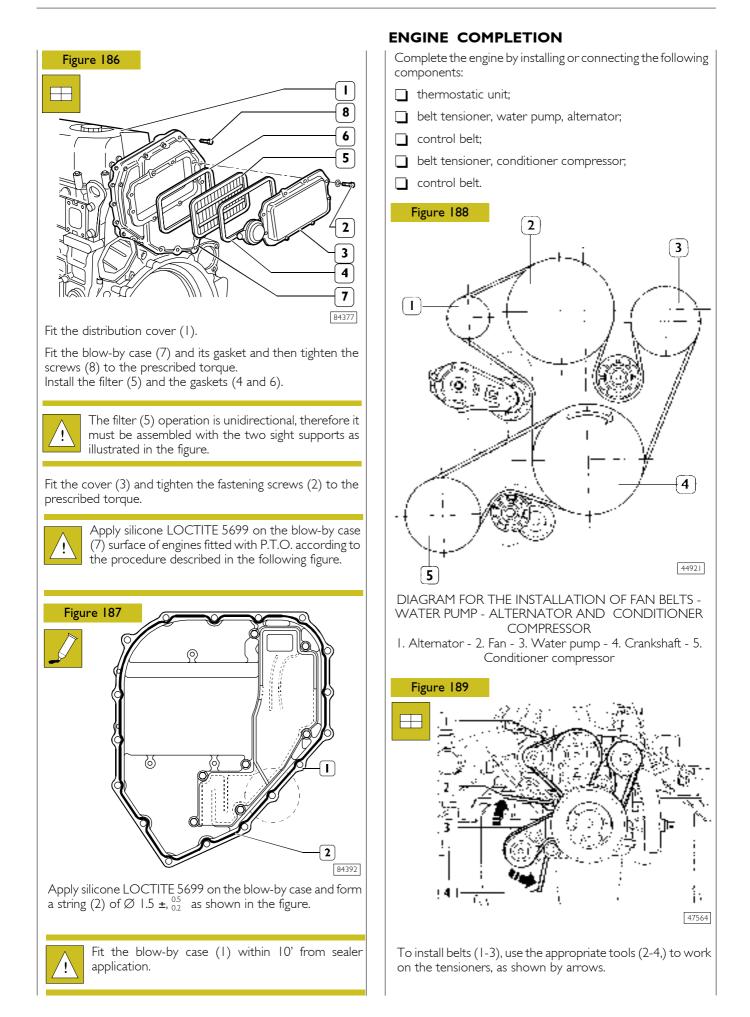


The tool 99360612 (1) inserted in the hole (3) in the engine flywheel (4) through the seat (2) of the engine speed sensor. Mount the gear (2, Figure 182) with the 4 slots (1, Figure 182) centred with the fixing holes of the camshaft, locking the relevant screws to the required tightening torque. Check the timing of the shaft by first turning the flywheel clockwise to discharge the cam completely and then turn the flywheel anticlockwise until the dial gauge gives a reading of:  $4.90 \pm 0.05 \text{ mm}$ 

Check the timing conditions described in Figure 180.


#### **Phonic wheel timing**




Turn the output shaft bringing cylinder piston I at compression stage to TDC.; turn the flywheel by about I/4 turn in opposite direction than normal direction of rotation. Turn the flywheel again according to normal direction of rotation until the hole marked with the double notch (4) can be seen through the inspection hole set under the flywheel housing. Fit tool 99360612 (5) into the flywheel sensor seat (6).

Fit tool 99360613 (2), through the timing sensor seat, on the tooth obtained on the phonic wheel.

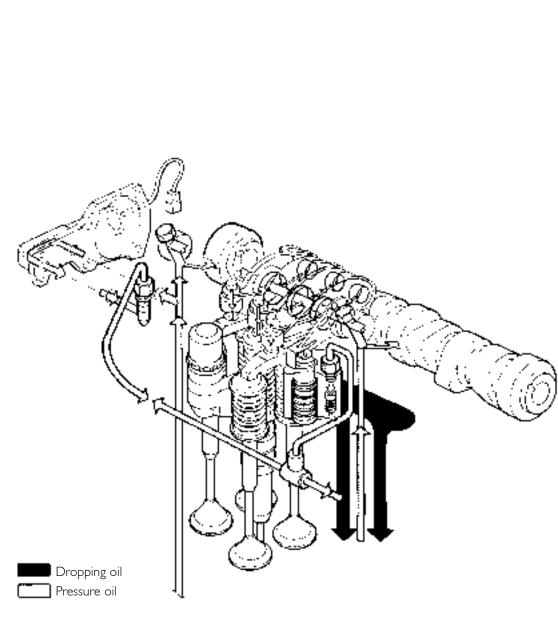
Should tool (2) fitting be difficult, slacken screws (3) and direct the phonic wheel (1) properly to position the tool (2) on the tooth. Tighten the screws (3).

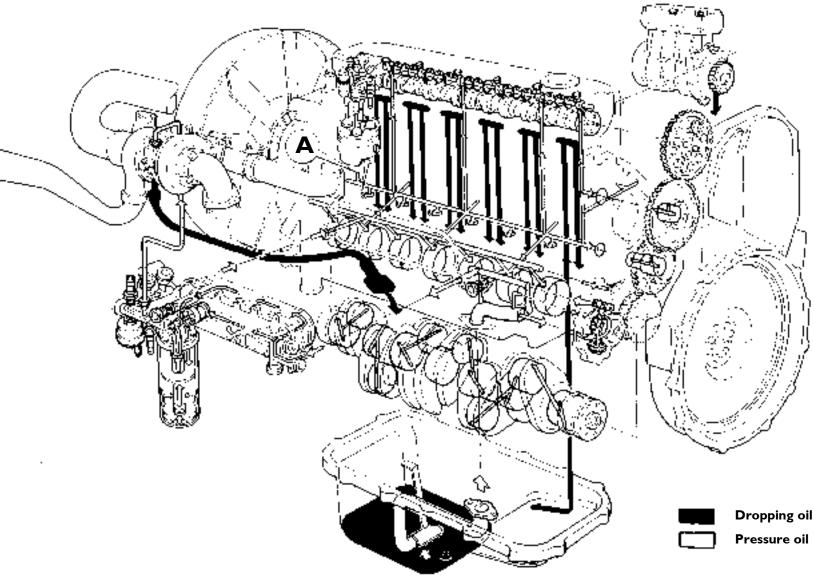


Intake and exhaust rocker play adjustment and pre-loading of rockers controlling pump injectors.



| Automatic tensioners do not require further                                                                                                                                                                                                                                                      | Figure 190                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| adjustments after the installation.                                                                                                                                                                                                                                                              | ⊞ (i) <b>_</b>                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>damping flywheel;</li> <li>fan;</li> <li>compressor;</li> <li>fuel pump;</li> <li>fuel filter and piping;</li> <li>pre-heating resistance;</li> <li>intake manifold;</li> <li>soundproof shields;</li> </ul>                                                                            |                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>heat exchanger;</li> <li>oil filter, lubricating the gasket;</li> <li>rockers caps;</li> <li>exhaust manifold;</li> <li>turbocharger and its oil and water piping;</li> <li>power take-off (P.T.O.) (if any) and related pipes;</li> <li>oil level stick and oil vapor vent;</li> </ul> |                                                                                                                                                                                                                                                                                                                                                  |
| rotate the engine and install the oil rose pipe.                                                                                                                                                                                                                                                 | <ul> <li>place the gasket (4) on the oil sump (1), position the spacer (3) and fit the sump to the engine block by tightening screws (2) to the prescribed torque;</li> <li>electric connections and sensors;</li> <li>remove the engine from the stand and fit the starter;</li> <li>fill the engine with the oil quantity required.</li> </ul> |


Figure 191

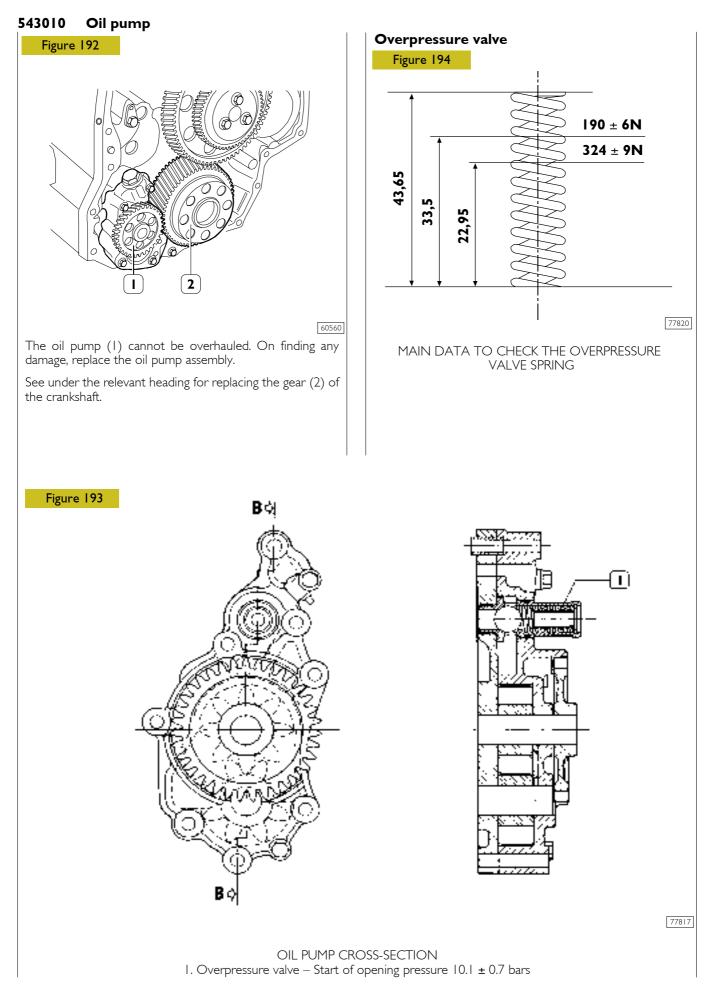

## 5430 LUBRICATION

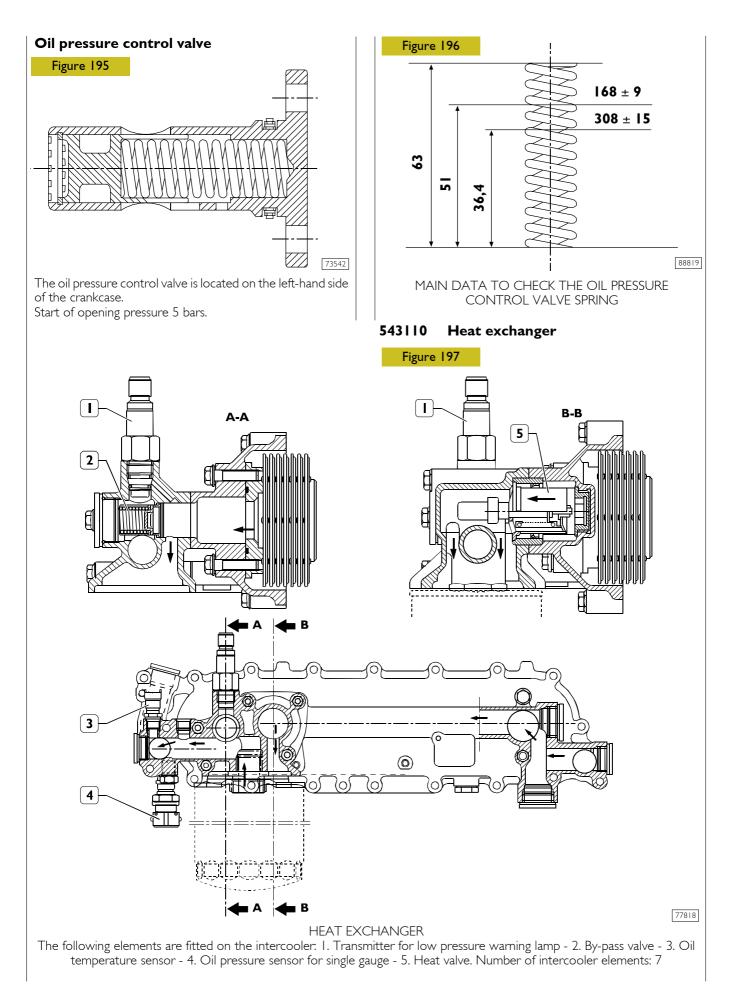
Engine lubrication is obtained with a gear pump driven by the crankshaft via gears.

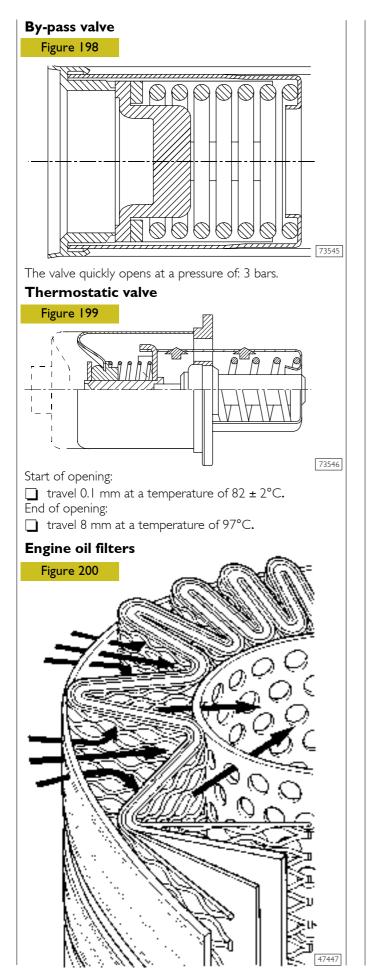
A heat exchanger governs the temperature of the lubricating oil.

The oil filter, signalling sensors and safety valves are installed in the intercooler.







Lubrication circuit


44918

94 ENGINE F2B

Stralis AT/AD







This is a new generation of filters that permit much more thorough filtration as they are able to holder back a greater amount of particles of smaller dimensions than those held back by conventional filters with a paper filtering element.

These high-filtration devices, to date used only in industrial processes, make it possible to:

reduce the wear of engine components over time;

maintain the performance/specifications of the oil and thereby lengthen the time intervals between changes.

#### External spiral winding

The filtering elements are closely wound by a spiral so that each fold is firmly anchored to the spiral with respect to the others. This produces a uniform use of the element even in the worst conditions such as cold starting with fluids with a high viscosity and peaks of flow. In addition, it ensures uniform distribution of the flow over the entire length of the filtering element, with consequent optimization of the loss of load and of its working life.

#### Mount upstream

To optimize flow distribution and the rigidity of the filtering element, this has an exclusive mount composed of a strong mesh made of nylon and an extremely strong synthetic material.

#### Filtering element

Composed of inert inorganic fibres bound with an exclusive resin to a structure with graded holes, the element is manufactured exclusively to precise procedures and strict quality control.

#### Mount downstream

A mount for the filtering element and a strong nylon mesh make it even stronger, which is especially helpful during cold starts and long periods of use. The performance of the filter remains constant and reliable throughout its working life and from one element to another, irrespective of the changes in working conditions.

#### Structural parts

The o-rings equipping the filtering element ensure a perfect seal between it and the container, eliminating by-pass risks and keeping filter performance constant. Strong corrosion-proof bottoms and a sturdy internal metal core complete the structure of the filtering element.

When mounting the filters, keep to the following rules:

- Oil and fit new seals.
- Screw down the filters to bring the seals into contact with the supporting bases.
- Tighten the filter to a torque of 35÷40 Nm.

#### 5432 COOLING

#### Description

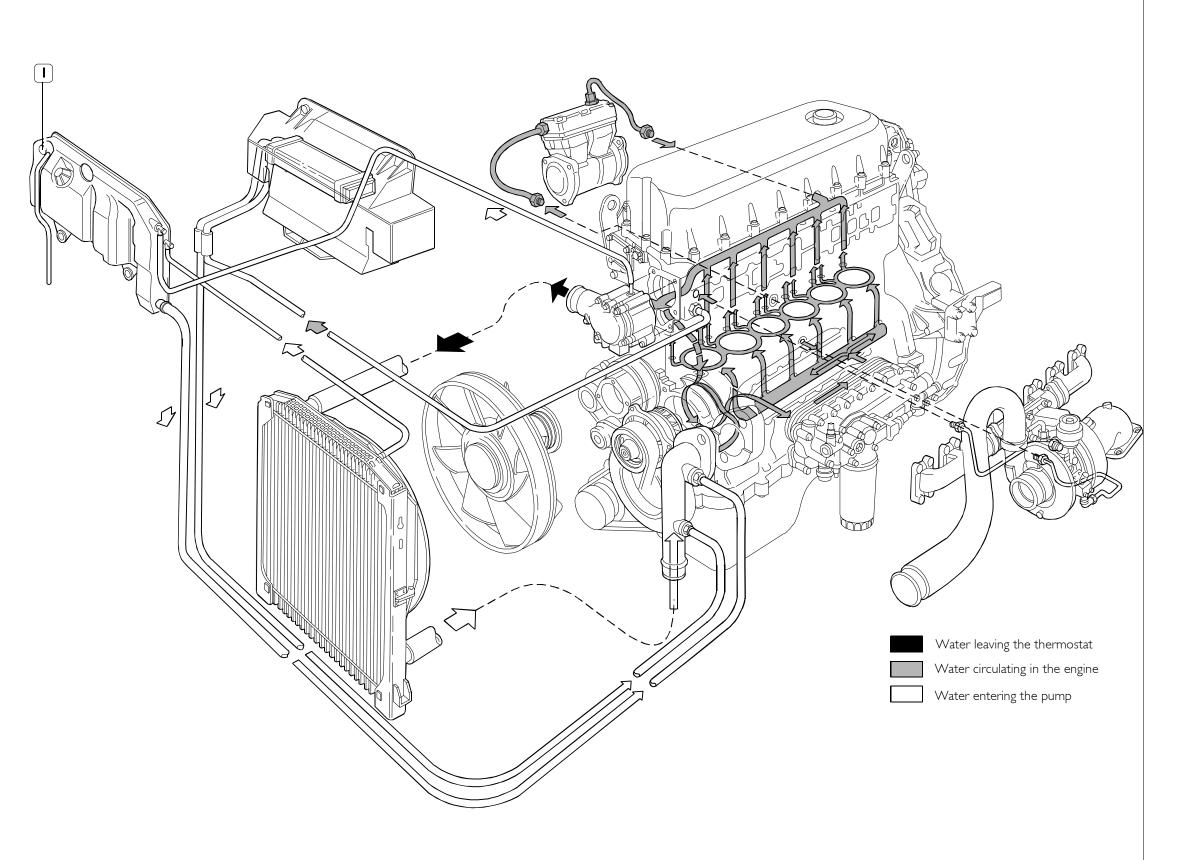
The engine cooling system works with forced circulation inside closed circuit and can be connected to an additional heater (if any) and to the intarder intercooler. It consists mainly of the following components:

- an expansion reservoir whose plug (1) incorporates two valves – discharge and charge – controlling the system pressure.
- a coolant level sensor placed at the bottom of the expansion reservoir with two coupling points:
  - coupling point for sensor S1 6 litres
  - 3.7 litres • coupling point for sensor S2
- an engine cooling unit to dissipate the heat taken by the coolant from the engine through the intercooler.
- a heat exchanger to cool down lubrication oil;
- a water pump with centrifugal system incorporated in the cylinder block;
- an electric fan consisting of a 2-speed electro-magnetic joint equipped with a neutral wheel shaft hub fitted with a metal plate moving along the axis and where the fan is installed. It is controlled electronically by the vehicle Multiplex system.
- a 3-way thermostat controlling the coolant circulation. **O**peration

The water pump is actuated by the crankshaft through a poli-V belt and sends coolant to the cylinder block, especially to the cylinder head (bigger quantity). When the coolant temperature reaches and overcomes the operating temperature, the thermostat is opened and from here the coolant flows into the radiator and is cooled down by the fan. The pressure inside the system depending on the temperature variation is controlled by the discharge and charge valves incorporated in the expansion reservoir filling plug (1).

The discharge valve has a double function:

- keep the system under light pressure in order to raise the coolant boiling point;
- discharge the pressure surplus in the atmosphere as a result of the coolant high temperature.

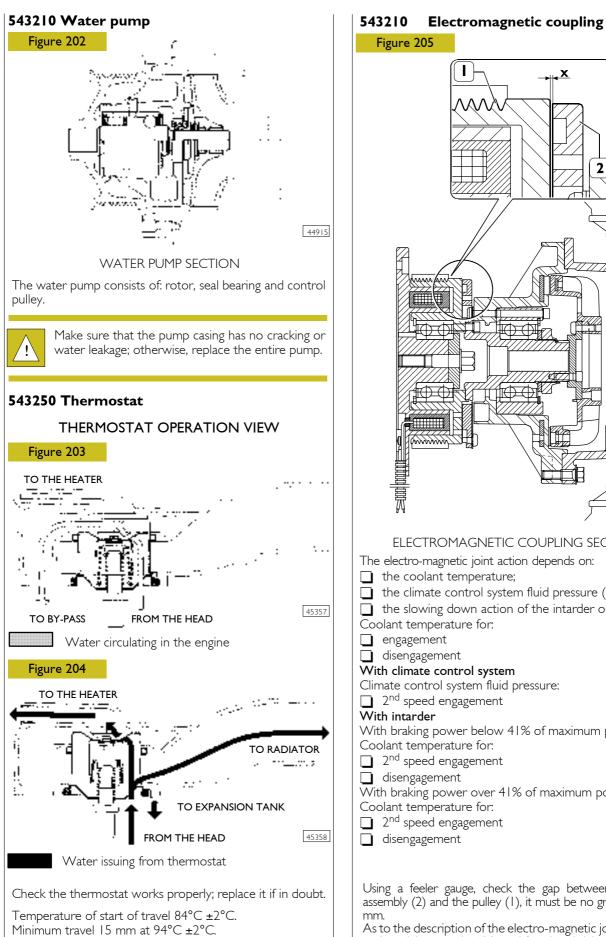

The charge valve makes it possible to transfer the coolant from the expansion reservoir to the radiator when a depression is generated inside the system as a result of the coolant volume reduction depending on the fall in the coolant temperature. Discharge valve opening:

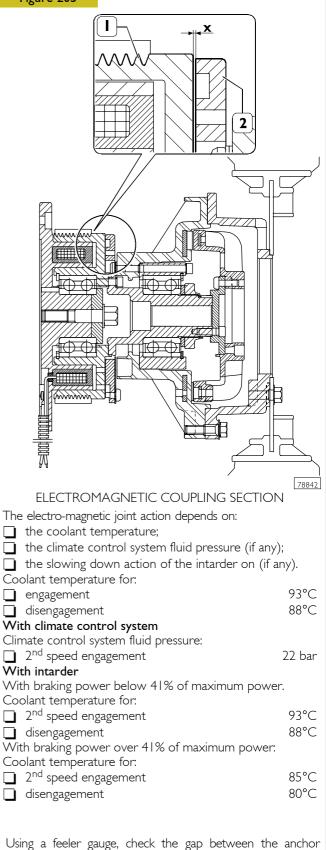
bar

bar

+ 0.2 0.9 - 0.1 • I<sup>st</sup> breather + 0.2 • 2<sup>nd</sup> breather 1.2 l.2 <sub>- 0.1</sub> bar -0.03 <sub>- 0.02</sub> bar Charge valve opening

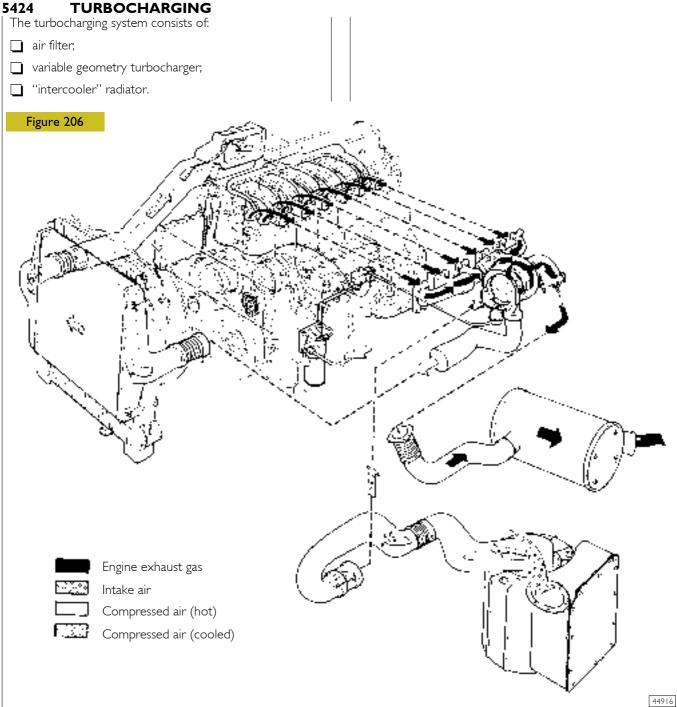
Figure 201





ENGINE F2B **99** 

79551

100 ENGINE F2B


Stralis AT/AD





assembly (2) and the pulley (1), it must be no greater than 2.5

As to the description of the electro-magnetic joint operation and servicing, see the "Manual for electric/electronic system repairing'' St. 603.93.191.



#### TURBOCHARGING DIAGRAM

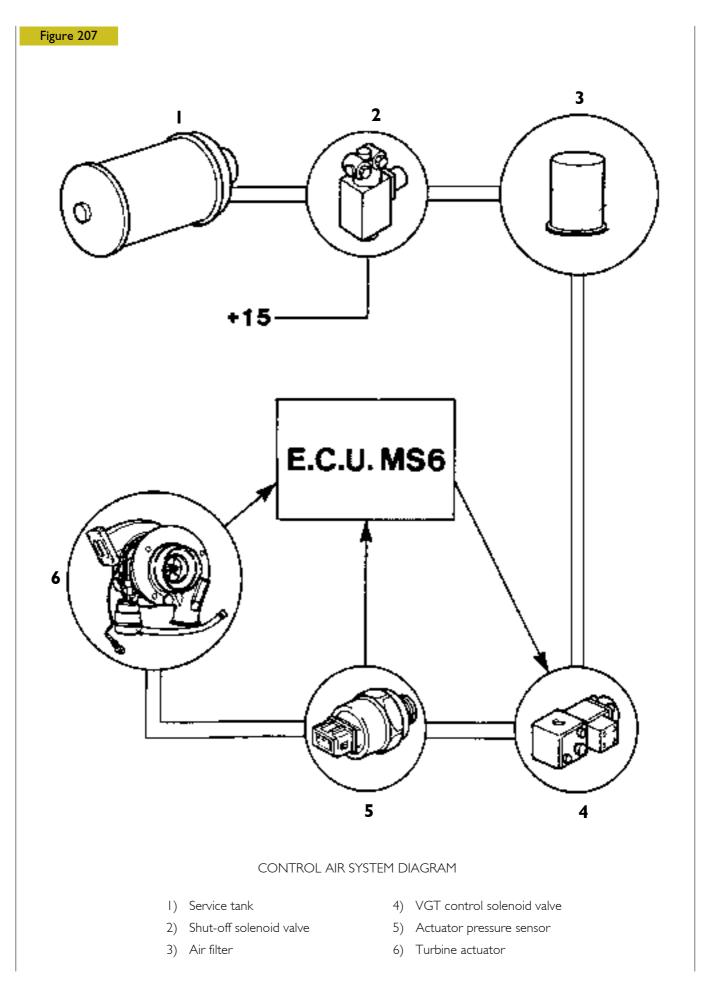
#### **TURBOCHARGER**

Operating principle

The variable geometry turbocharger (VGT) consists of a centrifugal compressor and a turbine, equipped with a mobile device which adjusts the speed by changing the area of the passing section of exhaust gases to the turbine.

Thanks to this solution, gas velocity and turbine speed can be high even when the engine is idling.

If the gas is made to go through a narrow passage, in fact, it flows faster, so that the turbine rotates more quickly.


The movement of the device, choking the exhaust gas flowing section, is carried out by a mechanism, activated by a pneumatic actuator.

This actuator is directly controlled by the electronic control unit by a proportional solenoid valve.

The device is in maximum closing condition at idle speed.

At high engine operating speed, the electronic control system is activated and increases the passing section, in order to allow the in-coming gases to flow without increasing their speed.

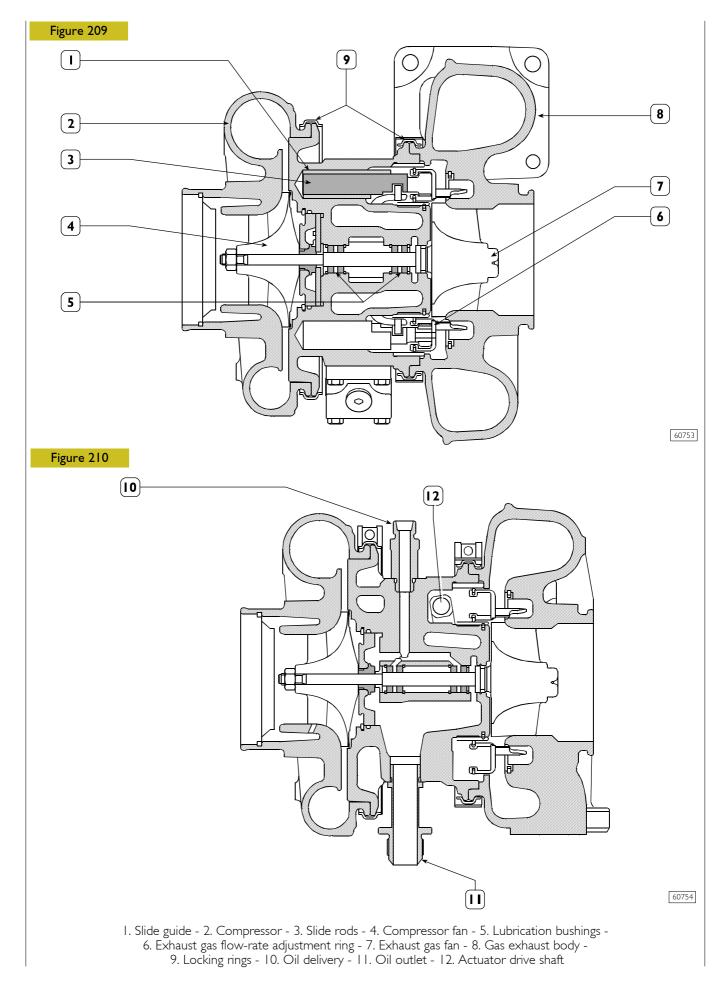
A toroidal chamber is obtained during the casting process in the central body for the passage of the coolant.

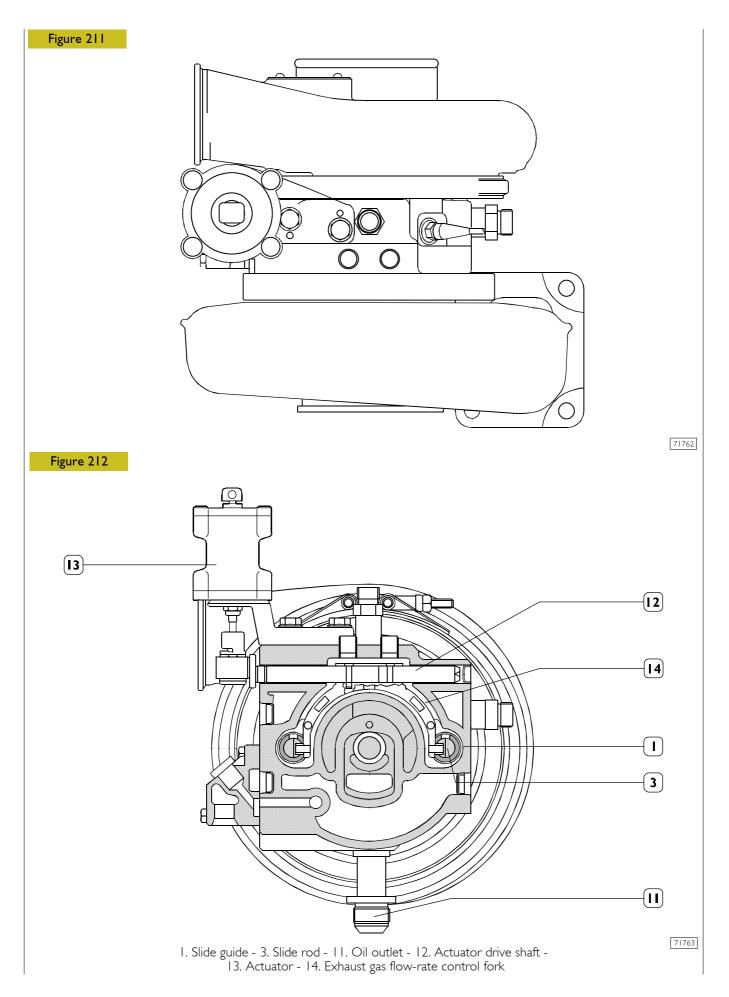


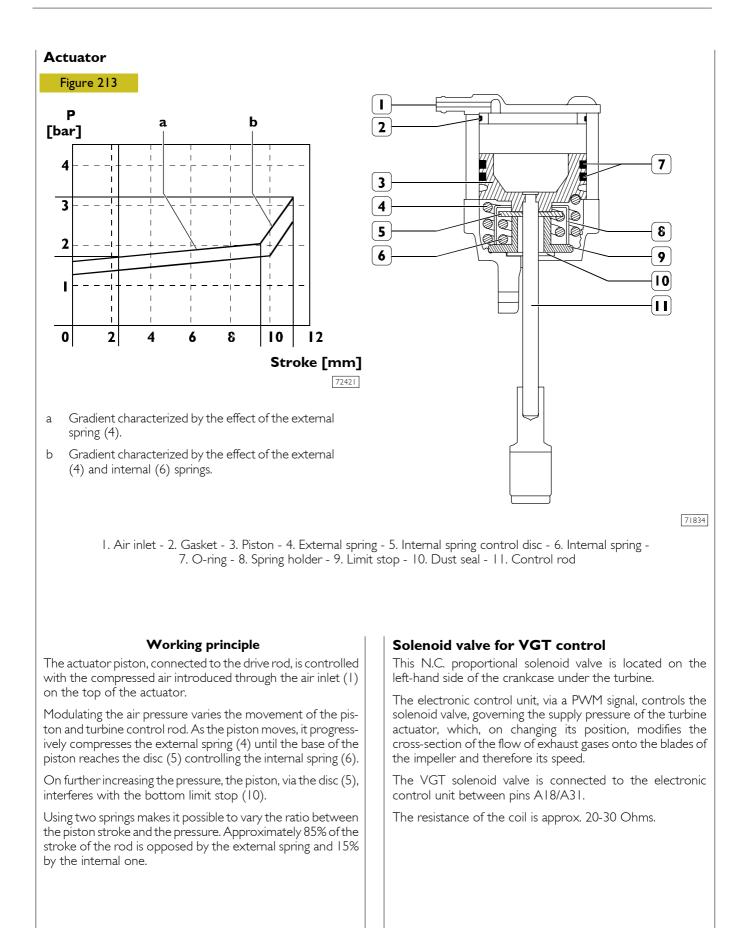
71759

4

7

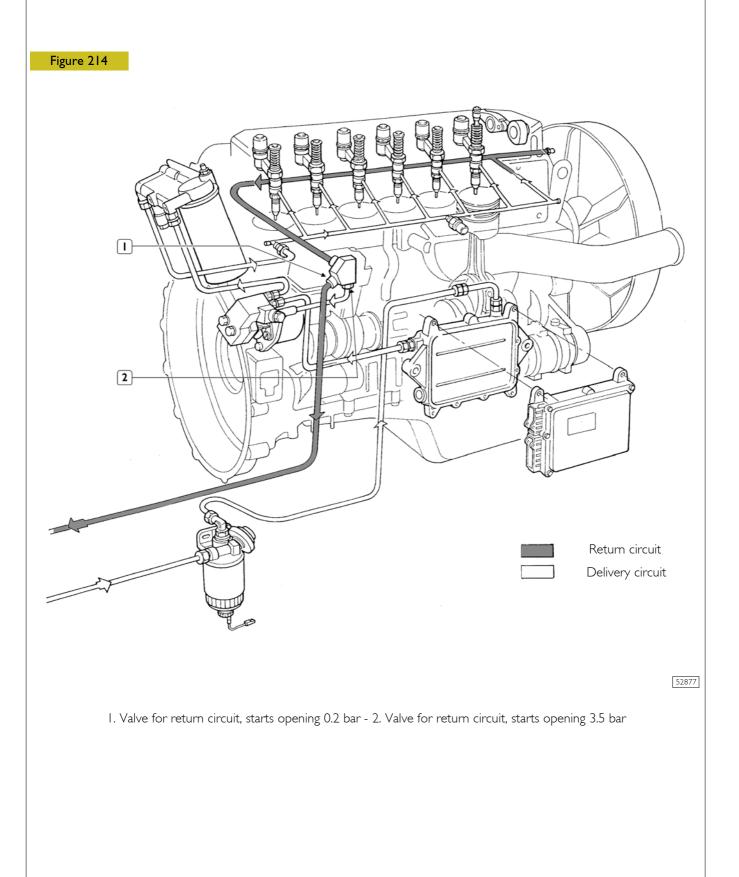

# **TURBO COMPRESSOR HOLSET HX 40V** Figure 208 I 6 2 3 4 Ø 7 -V Ø 5 8 I. Air delivery to the intake manifold - 2. Compressor - 3. Air inlet - 4. Actuator -5. Exhaust gas speed governor - 6. Exhaust gas inlet - 7. Exhaust gas outlet - 8. Turbine 4 L 6 C Î 2 2 7

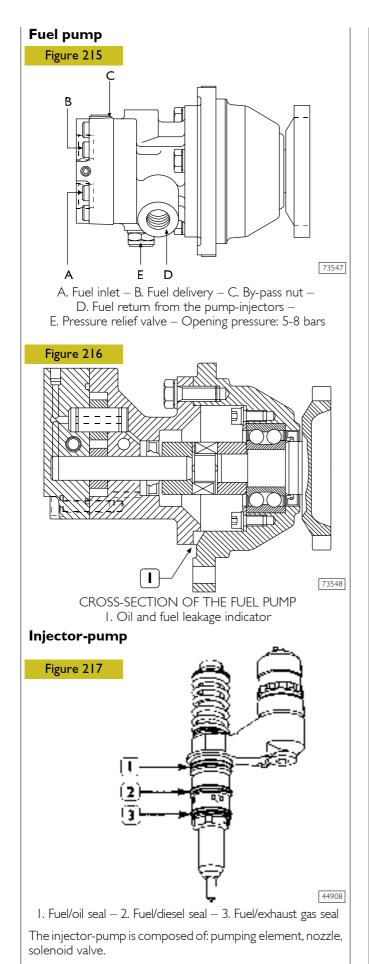

 Image: Stress of the stress


1. Air delivery to the intake manifold - 2. Compressor - 3. Air inlet - 4. Actuator - 5. Exhaust gas flow-rate adjustment ring - 6. Exhaust gas inlet - 7. Exhaust gas outlet - 8. Turbine - 9. Exhaust gas flow-rate control fork

3

71734






#### **FUEL FEED**

Fuel feed is obtained by means of a pump, fuel filter and pre-filter, 6 pump-injectors controlled by the camshaft by means of rockers and by the electronic control unit.





#### **Pumping element**

The pumping element is operated by a rocker arm governed directly by the cam of the camshaft.

The pumping element is able to ensure a high delivery pressure. The return stroke is made by means of a return spring.

#### Nozzle

Garages are authorized to perform fault diagnosis solely on the entire injection system and may not work inside the injector-pump, which must only be replaced.

A specific fault-diagnosis program, included in the control unit, is able to check the operation of each injector (it deactivates one at a time and checks the delivery of the other five). Fault diagnosis makes it possible to distinguish errors of an electrical origin from ones of a mechanical/hydraulic origin. It indicates broken pump-injectors.

It is therefore necessary to interpret all the control unit error messages correctly.

Any defects in the injectors are to be resolved by replacing them.

#### Solenoid valve

The solenoid, which is energized at each active phase of the cycle, via a signal from the control unit, controls a slide valve that shuts off the pumping element delivery pipe.

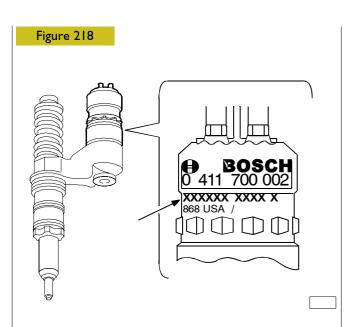
When the solenoid is not energized, the valve is open, the fuel is pumped but it flows back into the return pipe with the normal transfer pressure of approximately 5 bars.

When the solenoid is energized, the valve shuts and the fuel, not being able to flow back into the return pipe, is pumped into the nozzle at high pressure, causing the needle to lift.

The amount of fuel injected depends on the length of time the slide valve is closed and therefore on the time for which the solenoid is energized.

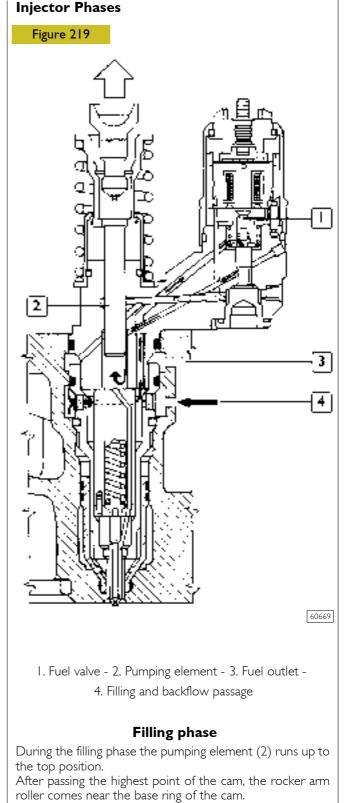
The solenoid valve is joined to the injector body and cannot be removed.

On the top there are two screws securing the electrical wiring from the control unit.


To ensure signal transmission, tighten the screws with a torque wrench to a torque of 1.36 - 1.92 Nm (0.136 - 0.192 kgm).

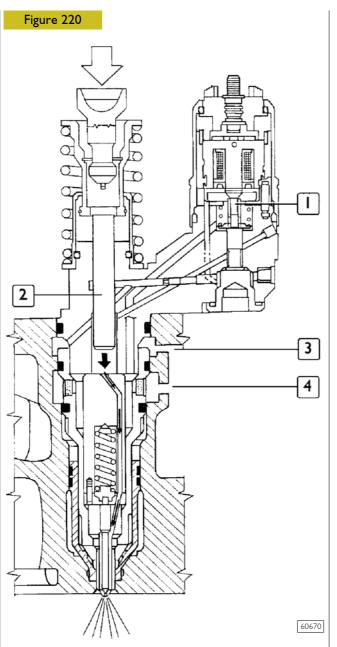
#### 775010 Replacing injectors-pump

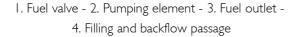
Injectors have to be replaced with great care (for their removal see the description on pages 44 and 45, for fitting them see the description on pages 85 and 86).




If this job is done with the engine on the vehicle, before removing the injectors-pump drain off the fuel contained in the pipes in the cylinder head by unscrewing the delivery and return fittings on the cylinder head.




For each injector replaced, hook up to the MODUS station and, when asked by the program, enter the code punched on the injector  $(\rightarrow)$  to reprogram the control unit.

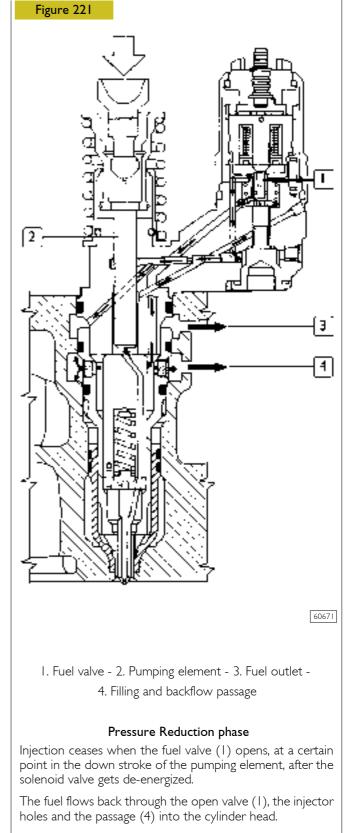

When checking the clearance of the rocker arms, it is important to check the injector-pump pre-load.



The fuel valve (1) is open and fuel can flow into the injector via the bottom passage (4) of the cylinder head.

Filling continues until the pumping element reaches its top limit.





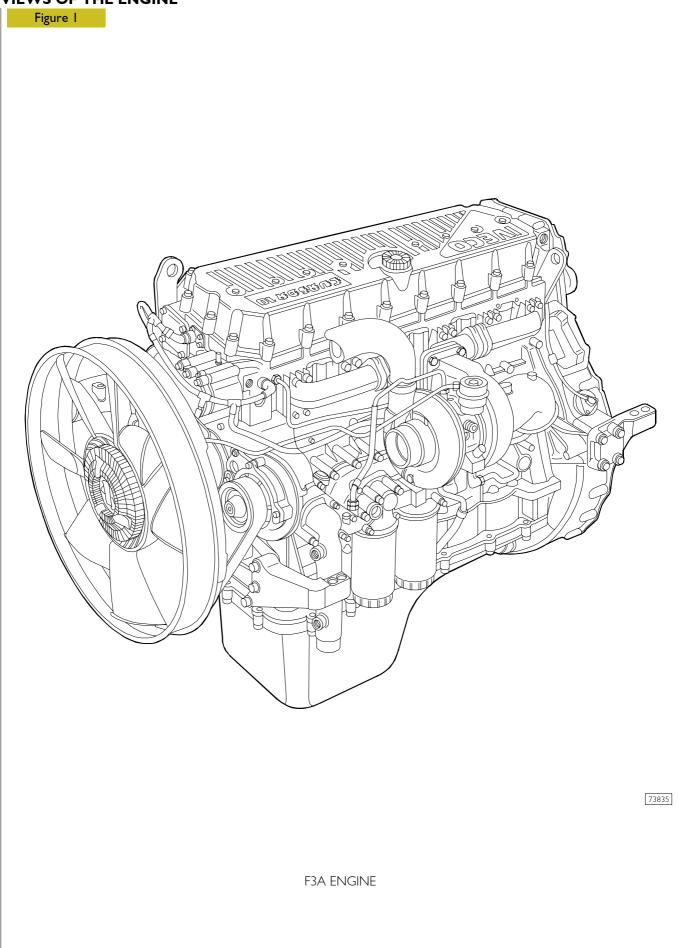

#### Injection phase

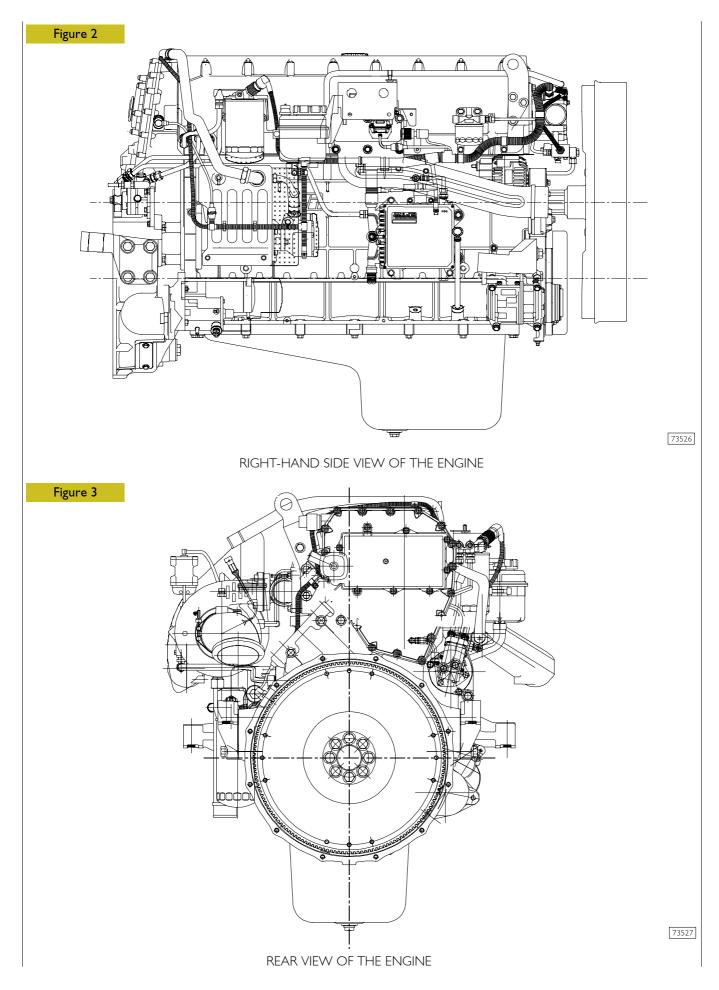
The injection phase begins when, at a certain point in the down phase of the pumping element, the solenoid valve gets energized and the fuel valve (1) shuts.

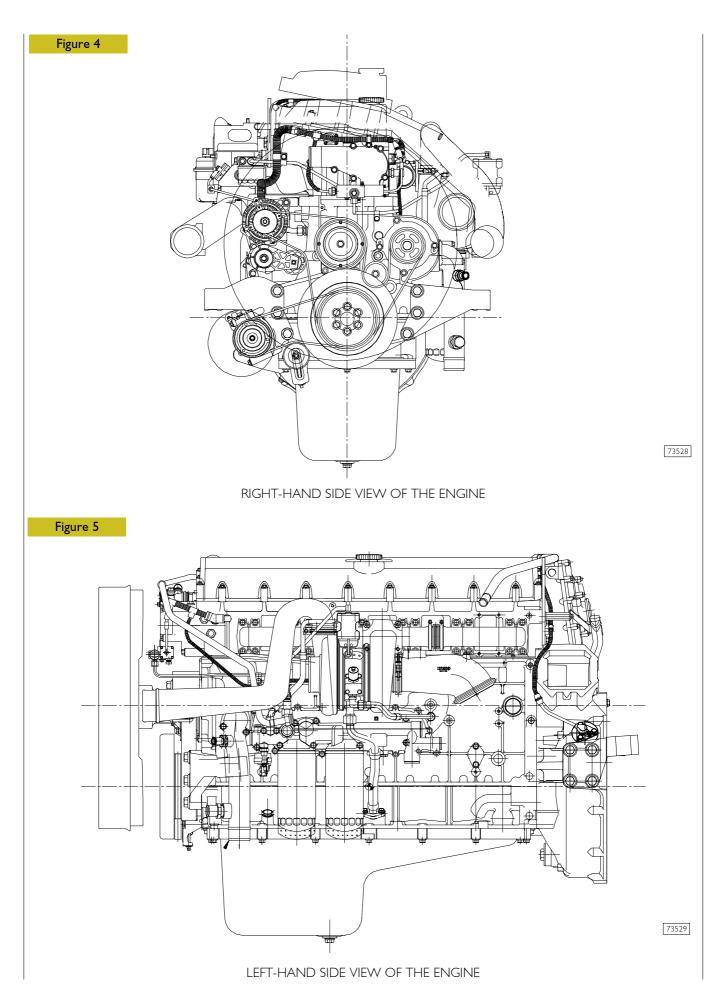
The moment delivery begins, appropriately calculated by the electronic control unit, depends on the working conditions of the engine.

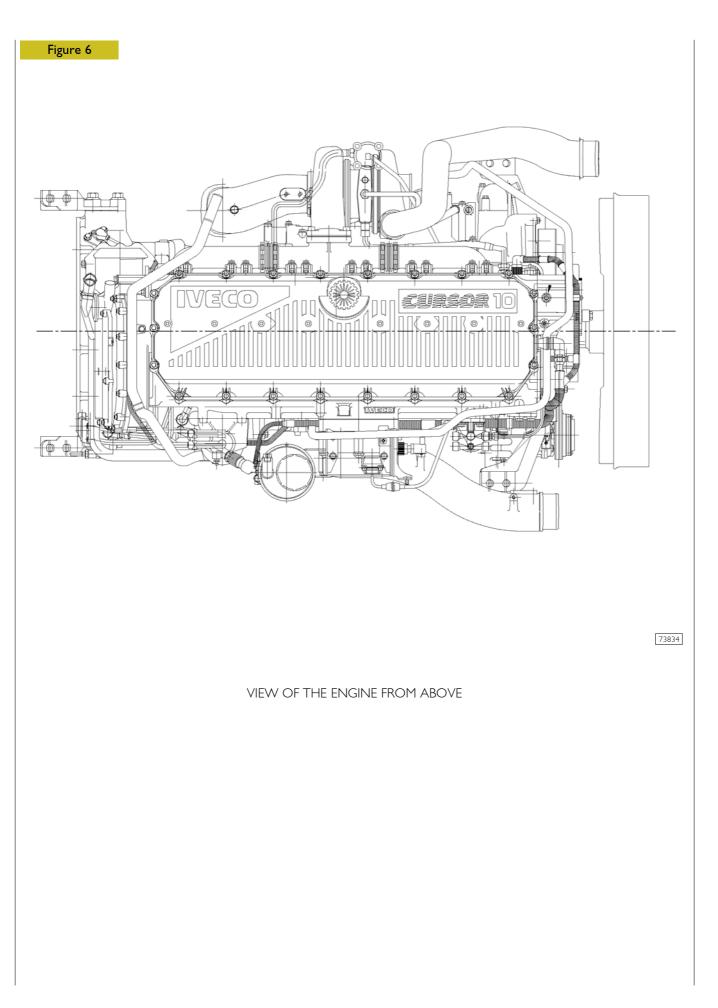
The cam continues with the rocker arm to push the pumping element (2) and the injection phase continues as long as the fuel valve (1) stays shut.




The time for which the solenoid valve stays energized, appropriately calculated by the electronic control unit, is the duration of injection (delivery) and it depends on the working conditions of the engine.

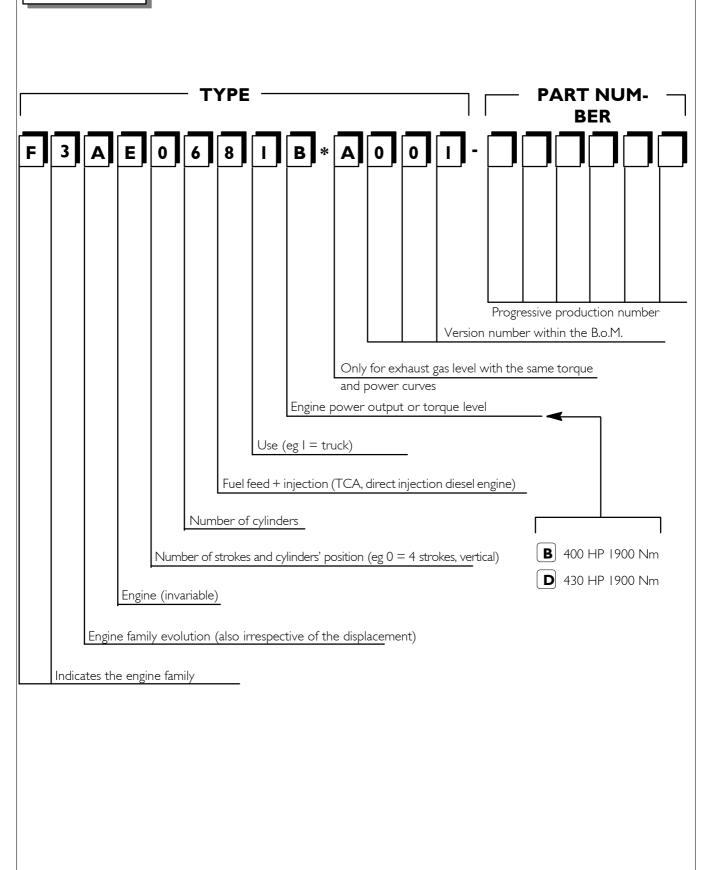

## F3A Engine


|      |                                                                          | Page |
|------|--------------------------------------------------------------------------|------|
| VIE  | WS OF THE ENGINE                                                         | 115  |
| TEC  | CHNICAL DESIGNATION                                                      | 119  |
| CH.  | ARACTERISTIC CURVES                                                      | 120  |
| GEI  | NERAL CHARACTERISTICS                                                    | 122  |
| ASS  | EMBLY CLEARANCE DATA                                                     | 125  |
| TIG  | HTENING TORQUE                                                           | 3    |
| ТО   | OLS                                                                      | 37   |
| DIS  | MANTLING THE ENGINE ON THE BENCH                                         | 149  |
| REF  | AIR OPERATIONS                                                           | 156  |
| CYL  | INDER BLOCK                                                              | 156  |
|      | Checks and measurements                                                  | 156  |
| CYI  | INDER LINERS                                                             | 157  |
|      | Replacing cylinder liners                                                | 158  |
| CR/  | ankshaft                                                                 | 159  |
|      | Measuring the main journals and crankpins                                | 160  |
|      | Preliminary measurement of main and big end bearing shell selection data | 161  |
|      | Selecting the main and big end bearing shells                            | 162  |
|      | Replacing the timing gear<br>and oil pump                                | 168  |
|      | Checking main journal assembly clearance                                 | 168  |
|      | Checking crankshaft end float                                            | 169  |
| PIST | TON CONNECTING ROD ASSEMBLY                                              | 170  |
|      | Piston rings                                                             | 172  |
| СО   | NNECTING RODS                                                            | 173  |
|      | Bushings                                                                 | 174  |
|      | Checking connecting rods                                                 | 174  |
|      | Mounting the connecting rod – piston assembly                            | 175  |
|      |                                                                          |      |

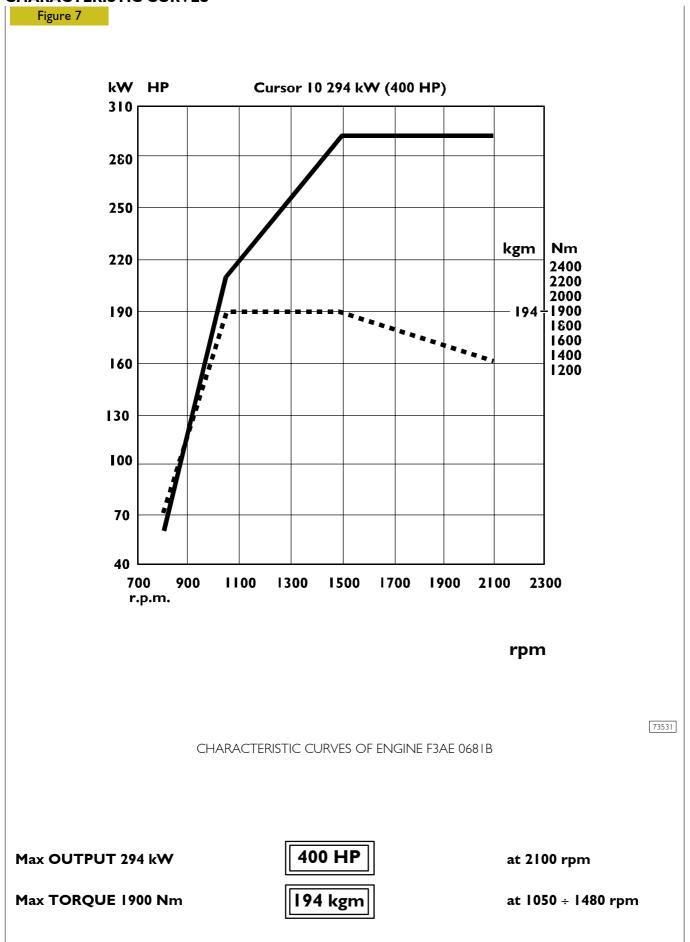

|                                                                   | Page |                                                                                                    | Page |
|-------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|------|
|                                                                   |      | Fitting engine flywheel                                                                            | 194  |
| Mounting the piston rings                                         | 175  | Fitting camshaft                                                                                   | 195  |
| Fitting the big end bearing shells                                | 175  | Fitting pump-injectors                                                                             | 196  |
| Fitting connecting rod - piston assemblies in the cylinder liners | 176  | Fitting rocker-arm shaft assembly                                                                  | 196  |
| Checking piston protrusion                                        | 176  | Camshaft timing                                                                                    | 197  |
| Checking crankpin assembly clearance                              | 177  | Phonic wheel timing                                                                                | 199  |
| CYLINDER HEAD                                                     | 177  | Intake and exhaust rocker play adjustment and<br>pre-loading of rockers controlling pump injectors | 200  |
|                                                                   |      | Completing Engine Assembly                                                                         | 201  |
| Removing valves                                                   | 177  | LUBRICATION                                                                                        | 203  |
| Checking the planarity of the head on the cylinder block          | 177  | Oil pump                                                                                           | 205  |
| U Valves                                                          | 177  | Overpressure valve                                                                                 | 205  |
| Removing deposits and checking the valves                         | 177  | Oil pressure control valve                                                                         | 206  |
| Valve seats                                                       | 178  | Heat exchanger                                                                                     | 206  |
| Checking clearance between valve-stem and                         |      | By-pass valve                                                                                      | 207  |
| associated valve guide                                            | 179  | Thermostatic valve                                                                                 | 207  |
| 🖸 Valve guides                                                    | 179  | Engine oil filters                                                                                 | 207  |
| Replacing injector cases                                          | 179  | COOLING                                                                                            | 209  |
| Checking injector protrusion                                      | 181  |                                                                                                    | 209  |
|                                                                   | 182  | Operation                                                                                          | 209  |
| Bushings                                                          | 183  | U Water pump                                                                                       | 211  |
|                                                                   |      | Thermostat                                                                                         | 211  |
| Camshaft                                                          | 183  | Electromagnetic coupling                                                                           | 211  |
| Valve springs                                                     | 185  | TURBOCHARGING                                                                                      | 212  |
| Fitting valves and oil seal                                       | 186  | Turbocharger HOLSET HY55V                                                                          | 212  |
| ROCKER SHAFT                                                      | 186  | Actuator                                                                                           | 216  |
| Rocker arms                                                       | 187  | Solenoid valve for VGT control                                                                     | 216  |
| <b></b> Shaft                                                     | 187  | FEEDING                                                                                            | 218  |
| ENGINE ASSEMBLY ON BENCH                                          | 188  | <b>—</b> Fuel pump                                                                                 | 219  |
| Fitting connecting rod - piston assemblies                        |      |                                                                                                    | 219  |
| in cylinder liners                                                | 191  | Replacing injectors-pump                                                                           | 219  |
| ENGINE FLYWHEEL                                                   | 194  | Injector Phases                                                                                    | 220  |
|                                                                   |      |                                                                                                    |      |

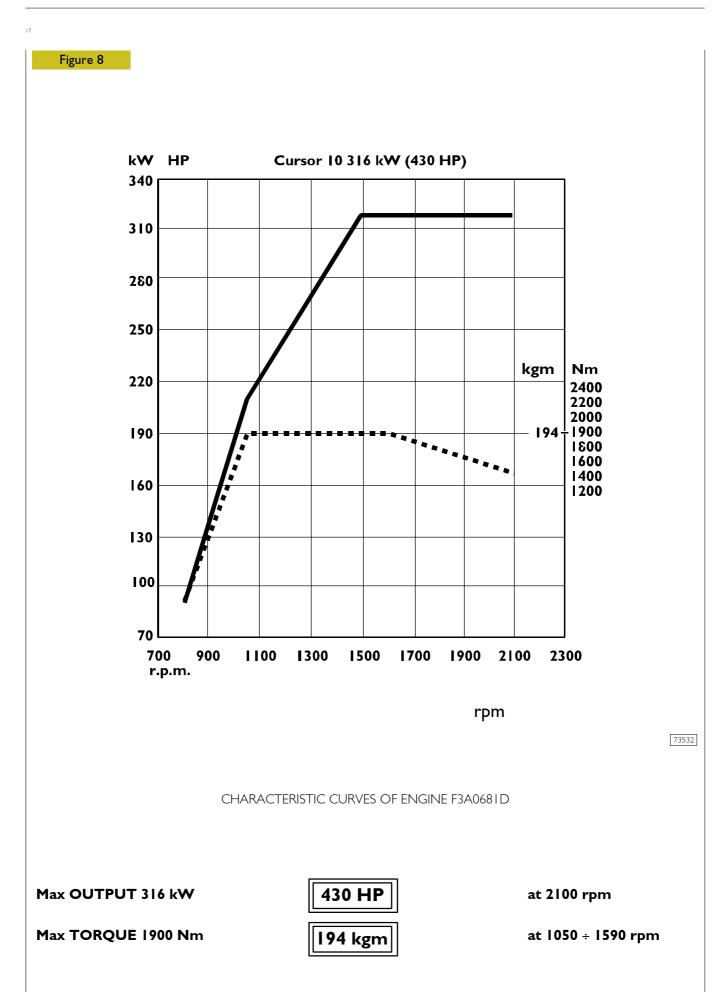
## VIEWS OF THE ENGINE









#### **TECHNICAL DESIGNATION**

#### ENGINE



#### **CHARACTERISTIC CURVES**





#### **GENERAL CHARACTERISTICS**

|          | Туре                             |                 | F3AE0681B              | F3AE0681D        |
|----------|----------------------------------|-----------------|------------------------|------------------|
| <b>A</b> | Cycle                            |                 | 4-stroke Diesel engine |                  |
|          | Fuel feed                        |                 | Turbocharged w         | vith aftercooler |
|          | Injection                        |                 | Dire                   | ect              |
|          | No. of cylinders                 |                 | 6 in                   | line             |
|          | Bore                             | mm              | 125                    |                  |
|          | Stroke                           | mm              | 140                    |                  |
|          | Total displacement               | cm <sup>3</sup> | 10300                  |                  |
| Q        | Compression ratio                |                 | 17 ± 0.8               |                  |
|          | Max output                       | KW<br>(HP)      | 294<br>(400)           | 316<br>(430)     |
|          |                                  | rpm             | 2100                   | 2100             |
|          | Max. torque                      | Nm<br>(kgm)     | 1900<br>(194)          | 1900<br>(194)    |
|          |                                  | rpm             | 1050 ÷ 1480            | 1050 ÷ 1590      |
|          | Engine idling speed,<br>no load  | rpm             | 550 :                  | ±25              |
|          | Maximum engine speed,<br>no load | rpm             | 2550                   | ±20              |

|     | Туре                                                       |                | F3A                                                                                                                             |
|-----|------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|
|     | VALVE TIMING<br>opens before T.D.C.<br>closes after B.D.C. | A<br>B         | 16°<br>32°                                                                                                                      |
|     | opens before B.D.C.<br>closes after T.D.C.                 | D<br>C         | 50°<br>9°                                                                                                                       |
|     | For timing check X { Running X                             | mm<br>mm<br>mm | -<br>-<br>0.35 to 0.45<br>0.45 to 0.55                                                                                          |
|     | FEED<br>Injection<br>type: Bosch                           |                | Through fuel pump - filters<br>With electronically regulated injectors PDE 31<br>pump injectors controlled by overhead camshaft |
|     | Nozzle type                                                |                | _                                                                                                                               |
|     | Injection order                                            |                | I - 4 - 2 - 6 - 3 - 5                                                                                                           |
| bar | Injection pressure<br>Injector calibration                 | bar<br>bar     | 1500<br>290                                                                                                                     |

|                                                  | Туре                                                                                                 | F3A                                                                                         |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Î                                                | SUPERCHARGING                                                                                        |                                                                                             |
| UP                                               | Turbocharger type                                                                                    | Variable geometry Holset HY 55 V                                                            |
|                                                  | LUBRICATION                                                                                          | Forced by gear pump, pressure control valve, oil filter                                     |
| bar                                              | Oil pressure with hot engine<br>(100°C ±5°C):                                                        |                                                                                             |
|                                                  | at idling speed bar                                                                                  | 1.5                                                                                         |
|                                                  | at maximum rpm bar                                                                                   | 5                                                                                           |
|                                                  | COOLING                                                                                              | By centrifugal pump, regulating thermostat, viscostatic fan,<br>radiator and heat exchanger |
|                                                  | Water pump control                                                                                   | By belt                                                                                     |
|                                                  | Thermostat                                                                                           | N. I                                                                                        |
|                                                  | initial opening                                                                                      | ~84°C ±2°C                                                                                  |
|                                                  | maximum opening                                                                                      | 94°C ±2°C                                                                                   |
|                                                  | OIL FILLING                                                                                          |                                                                                             |
|                                                  | Total capacity<br>at 1 <sup>st</sup> filling                                                         |                                                                                             |
|                                                  | litres                                                                                               | 30                                                                                          |
|                                                  | kg                                                                                                   | 29.8                                                                                        |
|                                                  | Capacities                                                                                           |                                                                                             |
|                                                  | - engine sump min level<br>litres                                                                    | 17                                                                                          |
|                                                  |                                                                                                      | 15.3                                                                                        |
| Fiat Lubrificanti<br>Urania Turbo LD             | kg<br>- engine sump max level                                                                        | 0.0                                                                                         |
| (according to                                    | litres                                                                                               | 25                                                                                          |
| E3-96 standard)                                  | kg                                                                                                   | 22.5                                                                                        |
| Urania Turbo<br>(according to<br>E2-96 standard) | - quantity in circulation<br>that does not flow back                                                 |                                                                                             |
|                                                  | to the engine sump                                                                                   | 7                                                                                           |
|                                                  | litres                                                                                               | 7                                                                                           |
|                                                  | kg                                                                                                   | 6.3                                                                                         |
|                                                  | <ul> <li>quantity contained in<br/>the cartridge filter (which<br/>has to be added to the</li> </ul> |                                                                                             |
|                                                  | cartridge filter refill)                                                                             |                                                                                             |
|                                                  | litres                                                                                               | 2.5                                                                                         |
|                                                  | kg                                                                                                   | 2.3                                                                                         |

## ASSEMBLY CLEARANCE DATA

|                            | Туре                                                                                                                         | F3A                                                                     |                                                                             |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                            | K AND<br>ISM COMPONENTS                                                                                                      | mm                                                                      | 1                                                                           |
|                            | Bores for cylinder liners:<br>upper<br>Ø I<br>lower                                                                          | 42.000 to<br> 40.000 to                                                 |                                                                             |
| L<br>Ø2                    | Cylinder liners:<br>external diameter:<br>wper<br>Ø2<br>lower<br>length L                                                    | 4 .96  to  4 .986<br> 39.890 to  39.915                                 |                                                                             |
|                            | Cylinder liners -<br>crankcase bores<br>upper<br>lower                                                                       | 0.014 to 0.064<br>0.085 to 0.135                                        |                                                                             |
|                            | External diameter Ø2                                                                                                         |                                                                         |                                                                             |
| Ø3<br>×<br>Selection class | Cylinder sleeve<br>inside diameter Ø3A*<br>inside diameter Ø3B*<br>Protrusion X                                              | 125.000 to 125.013<br>125.011 to 125.024<br>0.045 to 0.075              |                                                                             |
|                            | Pistons:<br>measuring dimension X<br>external diameter ØIA <sup>●</sup><br>external diameter ØIB <sup>○</sup><br>pin bore Ø2 | NUERAL<br>18<br>124.884 to 124.896<br>124.895 to 124.907<br>50.010 to 1 | MAHLE - MONDIAL<br>18<br>124.881 to 124.893<br>124.892 to 124.904<br>50.018 |
| * Selection class          | Piston - cylinder sleeve<br>A*<br>B*                                                                                         | 0.104 to 0.129<br>0.093 to 0.118                                        | 0.107 to 0.132<br>0.096 to 0.131                                            |
| PHRS A <                   | Piston diameter ØI                                                                                                           |                                                                         |                                                                             |
| X                          | Pistons protrusion X                                                                                                         | 0.23 to 0.53                                                            |                                                                             |
| Ø3                         | Gudgeon pin Ø3                                                                                                               | 49.994 to 50.000                                                        |                                                                             |
|                            | Gudgeon pin - pin housing                                                                                                    | 0.010 to                                                                | 0.024                                                                       |

Class A pistons supplied as spares.

Class A pistons are fitted in production only and are not supplied as spares.